Total
304758 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2025-38595 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: xen: fix UAF in dmabuf_exp_from_pages() [dma_buf_fd() fixes; no preferences regarding the tree it goes through - up to xen folks] As soon as we'd inserted a file reference into descriptor table, another thread could close it. That's fine for the case when all we are doing is returning that descriptor to userland (it's a race, but it's a userland race and there's nothing the kernel can do about it). However, if we follow fd_install() with any kind of access to objects that would be destroyed on close (be it the struct file itself or anything destroyed by its ->release()), we have a UAF. dma_buf_fd() is a combination of reserving a descriptor and fd_install(). gntdev dmabuf_exp_from_pages() calls it and then proceeds to access the objects destroyed on close - starting with gntdev_dmabuf itself. Fix that by doing reserving descriptor before anything else and do fd_install() only when everything had been set up. | |||||
CVE-2025-38605 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Pass ab pointer directly to ath12k_dp_tx_get_encap_type() In ath12k_dp_tx_get_encap_type(), the arvif parameter is only used to retrieve the ab pointer. In vdev delete sequence the arvif->ar could become NULL and that would trigger kernel panic. Since the caller ath12k_dp_tx() already has a valid ab pointer, pass it directly to avoid panic and unnecessary dereferencing. PC points to "ath12k_dp_tx+0x228/0x988 [ath12k]" LR points to "ath12k_dp_tx+0xc8/0x988 [ath12k]". The Backtrace obtained is as follows: ath12k_dp_tx+0x228/0x988 [ath12k] ath12k_mac_tx_check_max_limit+0x608/0x920 [ath12k] ieee80211_process_measurement_req+0x320/0x348 [mac80211] ieee80211_tx_dequeue+0x9ac/0x1518 [mac80211] ieee80211_tx_dequeue+0xb14/0x1518 [mac80211] ieee80211_tx_prepare_skb+0x224/0x254 [mac80211] ieee80211_xmit+0xec/0x100 [mac80211] __ieee80211_subif_start_xmit+0xc50/0xf40 [mac80211] ieee80211_subif_start_xmit+0x2e8/0x308 [mac80211] netdev_start_xmit+0x150/0x18c dev_hard_start_xmit+0x74/0xc0 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 | |||||
CVE-2025-38597 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: vop2: fail cleanly if missing a primary plane for a video-port Each window of a vop2 is usable by a specific set of video ports, so while binding the vop2, we look through the list of available windows trying to find one designated as primary-plane and usable by that specific port. The code later wants to use drm_crtc_init_with_planes with that found primary plane, but nothing has checked so far if a primary plane was actually found. For whatever reason, the rk3576 vp2 does not have a usable primary window (if vp0 is also in use) which brought the issue to light and ended in a null-pointer dereference further down. As we expect a primary-plane to exist for a video-port, add a check at the end of the window-iteration and fail probing if none was found. | |||||
CVE-2025-38568 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing TCA_MQPRIO_TC_ENTRY_INDEX is validated using NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack write in the fp[] array, which only has room for 16 elements (0–15). Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1. | |||||
CVE-2025-38564 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: perf/core: Handle buffer mapping fail correctly in perf_mmap() After successful allocation of a buffer or a successful attachment to an existing buffer perf_mmap() tries to map the buffer read only into the page table. If that fails, the already set up page table entries are zapped, but the other perf specific side effects of that failure are not handled. The calling code just cleans up the VMA and does not invoke perf_mmap_close(). This leaks reference counts, corrupts user->vm accounting and also results in an unbalanced invocation of event::event_mapped(). Cure this by moving the event::event_mapped() invocation before the map_range() call so that on map_range() failure perf_mmap_close() can be invoked without causing an unbalanced event::event_unmapped() call. perf_mmap_close() undoes the reference counts and eventually frees buffers. | |||||
CVE-2025-38565 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: perf/core: Exit early on perf_mmap() fail When perf_mmap() fails to allocate a buffer, it still invokes the event_mapped() callback of the related event. On X86 this might increase the perf_rdpmc_allowed reference counter. But nothing undoes this as perf_mmap_close() is never called in this case, which causes another reference count leak. Return early on failure to prevent that. | |||||
CVE-2025-54411 | 2025-08-19 | N/A | N/A | ||
Discourse is an open-source discussion platform. Welcome banner user name string for logged in users can be vulnerable to XSS attacks, which affect the user themselves or an admin impersonating them. Admins can temporarily alter the welcome_banner.header.logged_in_members site text to remove the preferred_display_name placeholder, or not impersonate any users for the time being. This vulnerability is fixed in 3.5.0.beta8. | |||||
CVE-2025-38561 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Preauh_HashValue race condition If client send multiple session setup requests to ksmbd, Preauh_HashValue race condition could happen. There is no need to free sess->Preauh_HashValue at session setup phase. It can be freed together with session at connection termination phase. | |||||
CVE-2025-38593 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix double free in 'hci_discovery_filter_clear()' Function 'hci_discovery_filter_clear()' frees 'uuids' array and then sets it to NULL. There is a tiny chance of the following race: 'hci_cmd_sync_work()' 'update_passive_scan_sync()' 'hci_update_passive_scan_sync()' 'hci_discovery_filter_clear()' kfree(uuids); <-------------------------preempted--------------------------------> 'start_service_discovery()' 'hci_discovery_filter_clear()' kfree(uuids); // DOUBLE FREE <-------------------------preempted--------------------------------> uuids = NULL; To fix it let's add locking around 'kfree()' call and NULL pointer assignment. Otherwise the following backtrace fires: [ ] ------------[ cut here ]------------ [ ] kernel BUG at mm/slub.c:547! [ ] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP [ ] CPU: 3 UID: 0 PID: 246 Comm: bluetoothd Tainted: G O 6.12.19-kernel #1 [ ] Tainted: [O]=OOT_MODULE [ ] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ ] pc : __slab_free+0xf8/0x348 [ ] lr : __slab_free+0x48/0x348 ... [ ] Call trace: [ ] __slab_free+0xf8/0x348 [ ] kfree+0x164/0x27c [ ] start_service_discovery+0x1d0/0x2c0 [ ] hci_sock_sendmsg+0x518/0x924 [ ] __sock_sendmsg+0x54/0x60 [ ] sock_write_iter+0x98/0xf8 [ ] do_iter_readv_writev+0xe4/0x1c8 [ ] vfs_writev+0x128/0x2b0 [ ] do_writev+0xfc/0x118 [ ] __arm64_sys_writev+0x20/0x2c [ ] invoke_syscall+0x68/0xf0 [ ] el0_svc_common.constprop.0+0x40/0xe0 [ ] do_el0_svc+0x1c/0x28 [ ] el0_svc+0x30/0xd0 [ ] el0t_64_sync_handler+0x100/0x12c [ ] el0t_64_sync+0x194/0x198 [ ] Code: 8b0002e6 eb17031f 54fffbe1 d503201f (d4210000) [ ] ---[ end trace 0000000000000000 ]--- | |||||
CVE-2025-38571 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix client side handling of tls alerts A security exploit was discovered in NFS over TLS in tls_alert_recv due to its assumption that there is valid data in the msghdr's iterator's kvec. Instead, this patch proposes the rework how control messages are setup and used by sock_recvmsg(). If no control message structure is setup, kTLS layer will read and process TLS data record types. As soon as it encounters a TLS control message, it would return an error. At that point, NFS can setup a kvec backed control buffer and read in the control message such as a TLS alert. Scott found that a msg iterator can advance the kvec pointer as a part of the copy process thus we need to revert the iterator before calling into the tls_alert_recv. | |||||
CVE-2025-38567 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: nfsd: avoid ref leak in nfsd_open_local_fh() If two calls to nfsd_open_local_fh() race and both successfully call nfsd_file_acquire_local(), they will both get an extra reference to the net to accompany the file reference stored in *pnf. One of them will fail to store (using xchg()) the file reference in *pnf and will drop that reference but WON'T drop the accompanying reference to the net. This leak means that when the nfs server is shut down it will hang in nfsd_shutdown_net() waiting for &nn->nfsd_net_free_done. This patch adds the missing nfsd_net_put(). | |||||
CVE-2025-38582 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix double destruction of rsv_qp rsv_qp may be double destroyed in error flow, first in free_mr_init(), and then in hns_roce_exit(). Fix it by moving the free_mr_init() call into hns_roce_v2_init(). list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100) WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240 ... Call trace: __list_del_entry_valid+0x148/0x240 hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2] hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2] hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2] free_mr_exit+0x6c/0x120 [hns_roce_hw_v2] hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2] hns_roce_exit+0x118/0x350 [hns_roce_hw_v2] __hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2] hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2] hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2] hclge_notify_roce_client+0x6c/0x160 [hclge] hclge_reset_rebuild+0x150/0x5c0 [hclge] hclge_reset+0x10c/0x140 [hclge] hclge_reset_subtask+0x80/0x104 [hclge] hclge_reset_service_task+0x168/0x3ac [hclge] hclge_service_task+0x50/0x100 [hclge] process_one_work+0x250/0x9a0 worker_thread+0x324/0x990 kthread+0x190/0x210 ret_from_fork+0x10/0x18 | |||||
CVE-2025-38580 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ext4: fix inode use after free in ext4_end_io_rsv_work() In ext4_io_end_defer_completion(), check if io_end->list_vec is empty to avoid adding an io_end that requires no conversion to the i_rsv_conversion_list, which in turn prevents starting an unnecessary worker. An ext4_emergency_state() check is also added to avoid attempting to abort the journal in an emergency state. Additionally, ext4_put_io_end_defer() is refactored to call ext4_io_end_defer_completion() directly instead of being open-coded. This also prevents starting an unnecessary worker when EXT4_IO_END_FAILED is set but data_err=abort is not enabled. This ensures that the check in ext4_put_io_end_defer() is consistent with the check in ext4_end_bio(). Otherwise, we might add an io_end to the i_rsv_conversion_list and then call ext4_finish_bio(), after which the inode could be freed before ext4_end_io_rsv_work() is called, triggering a use-after-free issue. | |||||
CVE-2025-38566 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix handling of server side tls alerts Scott Mayhew discovered a security exploit in NFS over TLS in tls_alert_recv() due to its assumption it can read data from the msg iterator's kvec.. kTLS implementation splits TLS non-data record payload between the control message buffer (which includes the type such as TLS aler or TLS cipher change) and the rest of the payload (say TLS alert's level/description) which goes into the msg payload buffer. This patch proposes to rework how control messages are setup and used by sock_recvmsg(). If no control message structure is setup, kTLS layer will read and process TLS data record types. As soon as it encounters a TLS control message, it would return an error. At that point, NFS can setup a kvec backed msg buffer and read in the control message such as a TLS alert. Msg iterator can advance the kvec pointer as a part of the copy process thus we need to revert the iterator before calling into the tls_alert_recv. | |||||
CVE-2025-38601 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: clear initialized flag for deinit-ed srng lists In a number of cases we see kernel panics on resume due to ath11k kernel page fault, which happens under the following circumstances: 1) First ath11k_hal_dump_srng_stats() call Last interrupt received for each group: ath11k_pci 0000:01:00.0: group_id 0 22511ms before ath11k_pci 0000:01:00.0: group_id 1 14440788ms before [..] ath11k_pci 0000:01:00.0: failed to receive control response completion, polling.. ath11k_pci 0000:01:00.0: Service connect timeout ath11k_pci 0000:01:00.0: failed to connect to HTT: -110 ath11k_pci 0000:01:00.0: failed to start core: -110 ath11k_pci 0000:01:00.0: firmware crashed: MHI_CB_EE_RDDM ath11k_pci 0000:01:00.0: already resetting count 2 ath11k_pci 0000:01:00.0: failed to wait wlan mode request (mode 4): -110 ath11k_pci 0000:01:00.0: qmi failed to send wlan mode off: -110 ath11k_pci 0000:01:00.0: failed to reconfigure driver on crash recovery [..] 2) At this point reconfiguration fails (we have 2 resets) and ath11k_core_reconfigure_on_crash() calls ath11k_hal_srng_deinit() which destroys srng lists. However, it does not reset per-list ->initialized flag. 3) Second ath11k_hal_dump_srng_stats() call sees stale ->initialized flag and attempts to dump srng stats: Last interrupt received for each group: ath11k_pci 0000:01:00.0: group_id 0 66785ms before ath11k_pci 0000:01:00.0: group_id 1 14485062ms before ath11k_pci 0000:01:00.0: group_id 2 14485062ms before ath11k_pci 0000:01:00.0: group_id 3 14485062ms before ath11k_pci 0000:01:00.0: group_id 4 14780845ms before ath11k_pci 0000:01:00.0: group_id 5 14780845ms before ath11k_pci 0000:01:00.0: group_id 6 14485062ms before ath11k_pci 0000:01:00.0: group_id 7 66814ms before ath11k_pci 0000:01:00.0: group_id 8 68997ms before ath11k_pci 0000:01:00.0: group_id 9 67588ms before ath11k_pci 0000:01:00.0: group_id 10 69511ms before BUG: unable to handle page fault for address: ffffa007404eb010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 100000067 P4D 100000067 PUD 10022d067 PMD 100b01067 PTE 0 Oops: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k] Call Trace: <TASK> ? __die_body+0xae/0xb0 ? page_fault_oops+0x381/0x3e0 ? exc_page_fault+0x69/0xa0 ? asm_exc_page_fault+0x22/0x30 ? ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k (HASH:6cea 4)] ath11k_qmi_driver_event_work+0xbd/0x1050 [ath11k (HASH:6cea 4)] worker_thread+0x389/0x930 kthread+0x149/0x170 Clear per-list ->initialized flag in ath11k_hal_srng_deinit(). | |||||
CVE-2025-38598 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free in amdgpu_userq_suspend+0x51a/0x5a0 [ +0.000020] BUG: KASAN: slab-use-after-free in amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu] [ +0.000817] Read of size 8 at addr ffff88812eec8c58 by task amd_pci_unplug/1733 [ +0.000027] CPU: 10 UID: 0 PID: 1733 Comm: amd_pci_unplug Tainted: G W 6.14.0+ #2 [ +0.000009] Tainted: [W]=WARN [ +0.000003] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000004] Call Trace: [ +0.000004] <TASK> [ +0.000003] dump_stack_lvl+0x76/0xa0 [ +0.000011] print_report+0xce/0x600 [ +0.000009] ? srso_return_thunk+0x5/0x5f [ +0.000006] ? kasan_complete_mode_report_info+0x76/0x200 [ +0.000007] ? kasan_addr_to_slab+0xd/0xb0 [ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu] [ +0.000707] kasan_report+0xbe/0x110 [ +0.000006] ? amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu] [ +0.000541] __asan_report_load8_noabort+0x14/0x30 [ +0.000005] amdgpu_userq_suspend+0x51a/0x5a0 [amdgpu] [ +0.000535] ? stop_cpsch+0x396/0x600 [amdgpu] [ +0.000556] ? stop_cpsch+0x429/0x600 [amdgpu] [ +0.000536] ? __pfx_amdgpu_userq_suspend+0x10/0x10 [amdgpu] [ +0.000536] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? kgd2kfd_suspend+0x132/0x1d0 [amdgpu] [ +0.000542] amdgpu_device_fini_hw+0x581/0xe90 [amdgpu] [ +0.000485] ? down_write+0xbb/0x140 [ +0.000007] ? __mutex_unlock_slowpath.constprop.0+0x317/0x360 [ +0.000005] ? __pfx_amdgpu_device_fini_hw+0x10/0x10 [amdgpu] [ +0.000482] ? __kasan_check_write+0x14/0x30 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? up_write+0x55/0xb0 [ +0.000007] ? srso_return_thunk+0x5/0x5f [ +0.000005] ? blocking_notifier_chain_unregister+0x6c/0xc0 [ +0.000008] amdgpu_driver_unload_kms+0x69/0x90 [amdgpu] [ +0.000484] amdgpu_pci_remove+0x93/0x130 [amdgpu] [ +0.000482] pci_device_remove+0xae/0x1e0 [ +0.000008] device_remove+0xc7/0x180 [ +0.000008] device_release_driver_internal+0x3d4/0x5a0 [ +0.000007] device_release_driver+0x12/0x20 [ +0.000004] pci_stop_bus_device+0x104/0x150 [ +0.000006] pci_stop_and_remove_bus_device_locked+0x1b/0x40 [ +0.000005] remove_store+0xd7/0xf0 [ +0.000005] ? __pfx_remove_store+0x10/0x10 [ +0.000006] ? __pfx__copy_from_iter+0x10/0x10 [ +0.000006] ? __pfx_dev_attr_store+0x10/0x10 [ +0.000006] dev_attr_store+0x3f/0x80 [ +0.000006] sysfs_kf_write+0x125/0x1d0 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000005] ? __kasan_check_write+0x14/0x30 [ +0.000005] kernfs_fop_write_iter+0x2ea/0x490 [ +0.000005] ? rw_verify_area+0x70/0x420 [ +0.000005] ? __pfx_kernfs_fop_write_iter+0x10/0x10 [ +0.000006] vfs_write+0x90d/0xe70 [ +0.000005] ? srso_return_thunk+0x5/0x5f [ +0.000005] ? __pfx_vfs_write+0x10/0x10 [ +0.000004] ? local_clock+0x15/0x30 [ +0.000008] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __kasan_slab_free+0x5f/0x80 [ +0.000005] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __kasan_check_read+0x11/0x20 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? fdget_pos+0x1d3/0x500 [ +0.000007] ksys_write+0x119/0x220 [ +0.000005] ? putname+0x1c/0x30 [ +0.000006] ? __pfx_ksys_write+0x10/0x10 [ +0.000007] __x64_sys_write+0x72/0xc0 [ +0.000006] x64_sys_call+0x18ab/0x26f0 [ +0.000006] do_syscall_64+0x7c/0x170 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __pfx___x64_sys_openat+0x10/0x10 [ +0.000006] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __kasan_check_read+0x11/0x20 [ +0.000003] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? fpregs_assert_state_consistent+0x21/0xb0 [ +0.000006] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? syscall_exit_to_user_mode+0x4e/0x240 [ +0.000005] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? do_syscall_64+0x88/0x170 [ +0.000003] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? irqentry_exit+0x43/0x50 [ +0.000004] ? srso_return_thunk+0x5 ---truncated--- | |||||
CVE-2025-38557 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: HID: apple: validate feature-report field count to prevent NULL pointer dereference A malicious HID device with quirk APPLE_MAGIC_BACKLIGHT can trigger a NULL pointer dereference whilst the power feature-report is toggled and sent to the device in apple_magic_backlight_report_set(). The power feature-report is expected to have two data fields, but if the descriptor declares one field then accessing field[1] and dereferencing it in apple_magic_backlight_report_set() becomes invalid since field[1] will be NULL. An example of a minimal descriptor which can cause the crash is something like the following where the report with ID 3 (power report) only references a single 1-byte field. When hid core parses the descriptor it will encounter the final feature tag, allocate a hid_report (all members of field[] will be zeroed out), create field structure and populate it, increasing the maxfield to 1. The subsequent field[1] access and dereference causes the crash. Usage Page (Vendor Defined 0xFF00) Usage (0x0F) Collection (Application) Report ID (1) Usage (0x01) Logical Minimum (0) Logical Maximum (255) Report Size (8) Report Count (1) Feature (Data,Var,Abs) Usage (0x02) Logical Maximum (32767) Report Size (16) Report Count (1) Feature (Data,Var,Abs) Report ID (3) Usage (0x03) Logical Minimum (0) Logical Maximum (1) Report Size (8) Report Count (1) Feature (Data,Var,Abs) End Collection Here we see the KASAN splat when the kernel dereferences the NULL pointer and crashes: [ 15.164723] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP KASAN NOPTI [ 15.165691] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037] [ 15.165691] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0 #31 PREEMPT(voluntary) [ 15.165691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [ 15.165691] RIP: 0010:apple_magic_backlight_report_set+0xbf/0x210 [ 15.165691] Call Trace: [ 15.165691] <TASK> [ 15.165691] apple_probe+0x571/0xa20 [ 15.165691] hid_device_probe+0x2e2/0x6f0 [ 15.165691] really_probe+0x1ca/0x5c0 [ 15.165691] __driver_probe_device+0x24f/0x310 [ 15.165691] driver_probe_device+0x4a/0xd0 [ 15.165691] __device_attach_driver+0x169/0x220 [ 15.165691] bus_for_each_drv+0x118/0x1b0 [ 15.165691] __device_attach+0x1d5/0x380 [ 15.165691] device_initial_probe+0x12/0x20 [ 15.165691] bus_probe_device+0x13d/0x180 [ 15.165691] device_add+0xd87/0x1510 [...] To fix this issue we should validate the number of fields that the backlight and power reports have and if they do not have the required number of fields then bail. | |||||
CVE-2025-38613 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: staging: gpib: fix unset padding field copy back to userspace The introduction of a padding field in the gpib_board_info_ioctl is showing up as initialized data on the stack frame being copyied back to userspace in function board_info_ioctl. The simplest fix is to initialize the entire struct to zero to ensure all unassigned padding fields are zero'd before being copied back to userspace. | |||||
CVE-2025-38581 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Fix crash when rebind ccp device for ccp.ko When CONFIG_CRYPTO_DEV_CCP_DEBUGFS is enabled, rebinding the ccp device causes the following crash: $ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/unbind $ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/bind [ 204.976930] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ 204.978026] #PF: supervisor write access in kernel mode [ 204.979126] #PF: error_code(0x0002) - not-present page [ 204.980226] PGD 0 P4D 0 [ 204.981317] Oops: Oops: 0002 [#1] SMP NOPTI ... [ 204.997852] Call Trace: [ 204.999074] <TASK> [ 205.000297] start_creating+0x9f/0x1c0 [ 205.001533] debugfs_create_dir+0x1f/0x170 [ 205.002769] ? srso_return_thunk+0x5/0x5f [ 205.004000] ccp5_debugfs_setup+0x87/0x170 [ccp] [ 205.005241] ccp5_init+0x8b2/0x960 [ccp] [ 205.006469] ccp_dev_init+0xd4/0x150 [ccp] [ 205.007709] sp_init+0x5f/0x80 [ccp] [ 205.008942] sp_pci_probe+0x283/0x2e0 [ccp] [ 205.010165] ? srso_return_thunk+0x5/0x5f [ 205.011376] local_pci_probe+0x4f/0xb0 [ 205.012584] pci_device_probe+0xdb/0x230 [ 205.013810] really_probe+0xed/0x380 [ 205.015024] __driver_probe_device+0x7e/0x160 [ 205.016240] device_driver_attach+0x2f/0x60 [ 205.017457] bind_store+0x7c/0xb0 [ 205.018663] drv_attr_store+0x28/0x40 [ 205.019868] sysfs_kf_write+0x5f/0x70 [ 205.021065] kernfs_fop_write_iter+0x145/0x1d0 [ 205.022267] vfs_write+0x308/0x440 [ 205.023453] ksys_write+0x6d/0xe0 [ 205.024616] __x64_sys_write+0x1e/0x30 [ 205.025778] x64_sys_call+0x16ba/0x2150 [ 205.026942] do_syscall_64+0x56/0x1e0 [ 205.028108] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 205.029276] RIP: 0033:0x7fbc36f10104 [ 205.030420] Code: 89 02 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 8d 05 e1 08 2e 00 8b 00 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 41 54 55 49 89 d4 53 48 89 f5 This patch sets ccp_debugfs_dir to NULL after destroying it in ccp5_debugfs_destroy, allowing the directory dentry to be recreated when rebinding the ccp device. Tested on AMD Ryzen 7 1700X. | |||||
CVE-2025-38590 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Remove skb secpath if xfrm state is not found Hardware returns a unique identifier for a decrypted packet's xfrm state, this state is looked up in an xarray. However, the state might have been freed by the time of this lookup. Currently, if the state is not found, only a counter is incremented. The secpath (sp) extension on the skb is not removed, resulting in sp->len becoming 0. Subsequently, functions like __xfrm_policy_check() attempt to access fields such as xfrm_input_state(skb)->xso.type (which dereferences sp->xvec[sp->len - 1]) without first validating sp->len. This leads to a crash when dereferencing an invalid state pointer. This patch prevents the crash by explicitly removing the secpath extension from the skb if the xfrm state is not found after hardware decryption. This ensures downstream functions do not operate on a zero-length secpath. BUG: unable to handle page fault for address: ffffffff000002c8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 282e067 P4D 282e067 PUD 0 Oops: Oops: 0000 [#1] SMP CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:__xfrm_policy_check+0x61a/0xa30 Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa RSP: 0018:ffff88885fb04918 EFLAGS: 00010297 RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000 RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353 R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8 R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00 FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? try_to_wake_up+0x108/0x4c0 ? udp4_lib_lookup2+0xbe/0x150 ? udp_lib_lport_inuse+0x100/0x100 ? __udp4_lib_lookup+0x2b0/0x410 __xfrm_policy_check2.constprop.0+0x11e/0x130 udp_queue_rcv_one_skb+0x1d/0x530 udp_unicast_rcv_skb+0x76/0x90 __udp4_lib_rcv+0xa64/0xe90 ip_protocol_deliver_rcu+0x20/0x130 ip_local_deliver_finish+0x75/0xa0 ip_local_deliver+0xc1/0xd0 ? ip_protocol_deliver_rcu+0x130/0x130 ip_sublist_rcv+0x1f9/0x240 ? ip_rcv_finish_core+0x430/0x430 ip_list_rcv+0xfc/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x200/0x360 ? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core] gro_receive_skb+0xfd/0x210 mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core] mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core] ? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core] mlx5e_napi_poll+0x114/0xab0 [mlx5_core] __napi_poll+0x25/0x170 net_rx_action+0x32d/0x3a0 ? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core] ? notifier_call_chain+0x33/0xa0 handle_softirqs+0xda/0x250 irq_exit_rcu+0x6d/0xc0 common_interrupt+0x81/0xa0 </IRQ> |