Total
304758 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2025-25175 | 1 Siemens | 1 Simcenter Femap | 2025-08-19 | N/A | 7.8 HIGH |
A vulnerability has been identified in Simcenter Femap V2401 (All versions < V2401.0003), Simcenter Femap V2406 (All versions < V2406.0002). The affected application contains a memory corruption vulnerability while parsing specially crafted .NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-25443) | |||||
CVE-2023-4458 | 1 Linux | 1 Linux Kernel | 2025-08-19 | N/A | 7.5 HIGH |
A flaw was found within the parsing of extended attributes in the kernel ksmbd module. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated buffer. An attacker can leverage this to disclose sensitive information on affected installations of Linux. Only systems with ksmbd enabled are vulnerable to this CVE. | |||||
CVE-2024-45556 | 1 Qualcomm | 120 Fastconnect 6900, Fastconnect 6900 Firmware, Fastconnect 7800 and 117 more | 2025-08-19 | N/A | 6.5 MEDIUM |
Cryptographic issue may arise because the access control configuration permits Linux to read key registers in TCSR. | |||||
CVE-2024-45557 | 1 Qualcomm | 122 Ar8035, Ar8035 Firmware, Fastconnect 6700 and 119 more | 2025-08-19 | N/A | 7.8 HIGH |
Memory corruption can occur when TME processes addresses from TZ and MPSS requests without proper validation. | |||||
CVE-2025-38603 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix slab-use-after-free in amdgpu_userq_mgr_fini+0x70c The issue was reproduced on NV10 using IGT pci_unplug test. It is expected that `amdgpu_driver_postclose_kms()` is called prior to `amdgpu_drm_release()`. However, the bug is that `amdgpu_fpriv` was freed in `amdgpu_driver_postclose_kms()`, and then later accessed in `amdgpu_drm_release()` via a call to `amdgpu_userq_mgr_fini()`. As a result, KASAN detected a use-after-free condition, as shown in the log below. The proposed fix is to move the calls to `amdgpu_eviction_fence_destroy()` and `amdgpu_userq_mgr_fini()` into `amdgpu_driver_postclose_kms()`, so they are invoked before `amdgpu_fpriv` is freed. This also ensures symmetry with the initialization path in `amdgpu_driver_open_kms()`, where the following components are initialized: - `amdgpu_userq_mgr_init()` - `amdgpu_eviction_fence_init()` - `amdgpu_ctx_mgr_init()` Correspondingly, in `amdgpu_driver_postclose_kms()` we should clean up using: - `amdgpu_userq_mgr_fini()` - `amdgpu_eviction_fence_destroy()` - `amdgpu_ctx_mgr_fini()` This change eliminates the use-after-free and improves consistency in resource management between open and close paths. [ +0.094367] ================================================================== [ +0.000026] BUG: KASAN: slab-use-after-free in amdgpu_userq_mgr_fini+0x70c/0x730 [amdgpu] [ +0.000866] Write of size 8 at addr ffff88811c068c60 by task amd_pci_unplug/1737 [ +0.000026] CPU: 3 UID: 0 PID: 1737 Comm: amd_pci_unplug Not tainted 6.14.0+ #2 [ +0.000008] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000004] Call Trace: [ +0.000004] <TASK> [ +0.000003] dump_stack_lvl+0x76/0xa0 [ +0.000010] print_report+0xce/0x600 [ +0.000009] ? amdgpu_userq_mgr_fini+0x70c/0x730 [amdgpu] [ +0.000790] ? srso_return_thunk+0x5/0x5f [ +0.000007] ? kasan_complete_mode_report_info+0x76/0x200 [ +0.000008] ? amdgpu_userq_mgr_fini+0x70c/0x730 [amdgpu] [ +0.000684] kasan_report+0xbe/0x110 [ +0.000007] ? amdgpu_userq_mgr_fini+0x70c/0x730 [amdgpu] [ +0.000601] __asan_report_store8_noabort+0x17/0x30 [ +0.000007] amdgpu_userq_mgr_fini+0x70c/0x730 [amdgpu] [ +0.000801] ? __pfx_amdgpu_userq_mgr_fini+0x10/0x10 [amdgpu] [ +0.000819] ? srso_return_thunk+0x5/0x5f [ +0.000008] amdgpu_drm_release+0xa3/0xe0 [amdgpu] [ +0.000604] __fput+0x354/0xa90 [ +0.000010] __fput_sync+0x59/0x80 [ +0.000005] __x64_sys_close+0x7d/0xe0 [ +0.000006] x64_sys_call+0x2505/0x26f0 [ +0.000006] do_syscall_64+0x7c/0x170 [ +0.000004] ? kasan_record_aux_stack+0xae/0xd0 [ +0.000005] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? kmem_cache_free+0x398/0x580 [ +0.000006] ? __fput+0x543/0xa90 [ +0.000006] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __fput+0x543/0xa90 [ +0.000004] ? __kasan_check_read+0x11/0x20 [ +0.000007] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? __kasan_check_read+0x11/0x20 [ +0.000003] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? fpregs_assert_state_consistent+0x21/0xb0 [ +0.000006] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? syscall_exit_to_user_mode+0x4e/0x240 [ +0.000005] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? do_syscall_64+0x88/0x170 [ +0.000003] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? do_syscall_64+0x88/0x170 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? irqentry_exit+0x43/0x50 [ +0.000004] ? srso_return_thunk+0x5/0x5f [ +0.000004] ? exc_page_fault+0x7c/0x110 [ +0.000006] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ +0.000005] RIP: 0033:0x7ffff7b14f67 [ +0.000005] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff [ +0.000004] RSP: 002b:00007fffffffe358 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 [ +0.000006] RAX: ffffffffff ---truncated--- | |||||
CVE-2025-38576 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: powerpc/eeh: Make EEH driver device hotplug safe Multiple race conditions existed between the PCIe hotplug driver and the EEH driver, leading to a variety of kernel oopses of the same general nature: <pcie device unplug> <eeh driver trigger> <hotplug removal trigger> <pcie tree reconfiguration> <eeh recovery next step> <oops in EEH driver bus iteration loop> A second class of oops is also seen when the underlying bus disappears during device recovery. Refactor the EEH module to be PCI rescan and remove safe. Also clean up a few minor formatting / readability issues. | |||||
CVE-2025-38584 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: padata: Fix pd UAF once and for all There is a race condition/UAF in padata_reorder that goes back to the initial commit. A reference count is taken at the start of the process in padata_do_parallel, and released at the end in padata_serial_worker. This reference count is (and only is) required for padata_replace to function correctly. If padata_replace is never called then there is no issue. In the function padata_reorder which serves as the core of padata, as soon as padata is added to queue->serial.list, and the associated spin lock released, that padata may be processed and the reference count on pd would go away. Fix this by getting the next padata before the squeue->serial lock is released. In order to make this possible, simplify padata_reorder by only calling it once the next padata arrives. | |||||
CVE-2025-38586 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix fp initialization for exception boundary In the ARM64 BPF JIT when prog->aux->exception_boundary is set for a BPF program, find_used_callee_regs() is not called because for a program acting as exception boundary, all callee saved registers are saved. find_used_callee_regs() sets `ctx->fp_used = true;` when it sees FP being used in any of the instructions. For programs acting as exception boundary, ctx->fp_used remains false even if frame pointer is used by the program and therefore, FP is not set-up for such programs in the prologue. This can cause the kernel to crash due to a pagefault. Fix it by setting ctx->fp_used = true for exception boundary programs as fp is always saved in such programs. | |||||
CVE-2025-38562 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix null pointer dereference error in generate_encryptionkey If client send two session setups with krb5 authenticate to ksmbd, null pointer dereference error in generate_encryptionkey could happen. sess->Preauth_HashValue is set to NULL if session is valid. So this patch skip generate encryption key if session is valid. | |||||
CVE-2025-38574 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: pptp: ensure minimal skb length in pptp_xmit() Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data on ppp_sync_txmung") fixed ppp_sync_txmunge() We need a similar fix in pptp_xmit(), otherwise we might read uninit data as reported by syzbot. BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline] ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314 pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148 __release_sock+0x1d3/0x330 net/core/sock.c:3213 release_sock+0x6b/0x270 net/core/sock.c:3767 pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:727 ____sys_sendmsg+0x893/0xd80 net/socket.c:2566 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2620 __sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709 | |||||
CVE-2025-38554 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped By inducing delays in the right places, Jann Horn created a reproducer for a hard to hit UAF issue that became possible after VMAs were allowed to be recycled by adding SLAB_TYPESAFE_BY_RCU to their cache. Race description is borrowed from Jann's discovery report: lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under rcu_read_lock(). At that point, the VMA may be concurrently freed, and it can be recycled by another process. vma_start_read() then increments the vma->vm_refcnt (if it is in an acceptable range), and if this succeeds, vma_start_read() can return a recycled VMA. In this scenario where the VMA has been recycled, lock_vma_under_rcu() will then detect the mismatching ->vm_mm pointer and drop the VMA through vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm. This is wrong: It implicitly assumes that the caller is keeping the VMA's mm alive, but in this scenario the caller has no relation to the VMA's mm, so the rcuwait_wake_up() can cause UAF. The diagram depicting the race: T1 T2 T3 == == == lock_vma_under_rcu mas_walk <VMA gets removed from mm> mmap <the same VMA is reallocated> vma_start_read __refcount_inc_not_zero_limited_acquire munmap __vma_enter_locked refcount_add_not_zero vma_end_read vma_refcount_put __refcount_dec_and_test rcuwait_wait_event <finish operation> rcuwait_wake_up [UAF] Note that rcuwait_wait_event() in T3 does not block because refcount was already dropped by T1. At this point T3 can exit and free the mm causing UAF in T1. To avoid this we move vma->vm_mm verification into vma_start_read() and grab vma->vm_mm to stabilize it before vma_refcount_put() operation. [surenb@google.com: v3] | |||||
CVE-2025-38578 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid UAF in f2fs_sync_inode_meta() syzbot reported an UAF issue as below: [1] [2] [1] https://syzkaller.appspot.com/text?tag=CrashReport&x=16594c60580000 ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 Read of size 8 at addr ffff888100567dc8 by task kworker/u4:0/8 CPU: 1 PID: 8 Comm: kworker/u4:0 Tainted: G W 6.1.129-syzkaller-00017-g642656a36791 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Workqueue: writeback wb_workfn (flush-7:0) Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x151/0x1b7 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:316 [inline] print_report+0x158/0x4e0 mm/kasan/report.c:427 kasan_report+0x13c/0x170 mm/kasan/report.c:531 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:351 __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 __list_del_entry include/linux/list.h:134 [inline] list_del_init include/linux/list.h:206 [inline] f2fs_inode_synced+0x100/0x2e0 fs/f2fs/super.c:1553 f2fs_update_inode+0x72/0x1c40 fs/f2fs/inode.c:588 f2fs_update_inode_page+0x135/0x170 fs/f2fs/inode.c:706 f2fs_write_inode+0x416/0x790 fs/f2fs/inode.c:734 write_inode fs/fs-writeback.c:1460 [inline] __writeback_single_inode+0x4cf/0xb80 fs/fs-writeback.c:1677 writeback_sb_inodes+0xb32/0x1910 fs/fs-writeback.c:1903 __writeback_inodes_wb+0x118/0x3f0 fs/fs-writeback.c:1974 wb_writeback+0x3da/0xa00 fs/fs-writeback.c:2081 wb_check_background_flush fs/fs-writeback.c:2151 [inline] wb_do_writeback fs/fs-writeback.c:2239 [inline] wb_workfn+0xbba/0x1030 fs/fs-writeback.c:2266 process_one_work+0x73d/0xcb0 kernel/workqueue.c:2299 worker_thread+0xa60/0x1260 kernel/workqueue.c:2446 kthread+0x26d/0x300 kernel/kthread.c:386 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Allocated by task 298: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_alloc_info+0x1f/0x30 mm/kasan/generic.c:505 __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:333 kasan_slab_alloc include/linux/kasan.h:202 [inline] slab_post_alloc_hook+0x53/0x2c0 mm/slab.h:768 slab_alloc_node mm/slub.c:3421 [inline] slab_alloc mm/slub.c:3431 [inline] __kmem_cache_alloc_lru mm/slub.c:3438 [inline] kmem_cache_alloc_lru+0x102/0x270 mm/slub.c:3454 alloc_inode_sb include/linux/fs.h:3255 [inline] f2fs_alloc_inode+0x2d/0x350 fs/f2fs/super.c:1437 alloc_inode fs/inode.c:261 [inline] iget_locked+0x18c/0x7e0 fs/inode.c:1373 f2fs_iget+0x55/0x4ca0 fs/f2fs/inode.c:486 f2fs_lookup+0x3c1/0xb50 fs/f2fs/namei.c:484 __lookup_slow+0x2b9/0x3e0 fs/namei.c:1689 lookup_slow+0x5a/0x80 fs/namei.c:1706 walk_component+0x2e7/0x410 fs/namei.c:1997 lookup_last fs/namei.c:2454 [inline] path_lookupat+0x16d/0x450 fs/namei.c:2478 filename_lookup+0x251/0x600 fs/namei.c:2507 vfs_statx+0x107/0x4b0 fs/stat.c:229 vfs_fstatat fs/stat.c:267 [inline] vfs_lstat include/linux/fs.h:3434 [inline] __do_sys_newlstat fs/stat.c:423 [inline] __se_sys_newlstat+0xda/0x7c0 fs/stat.c:417 __x64_sys_newlstat+0x5b/0x70 fs/stat.c:417 x64_sys_call+0x52/0x9a0 arch/x86/include/generated/asm/syscalls_64.h:7 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3b/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x68/0xd2 Freed by task 0: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x40 mm/kasan/generic.c:516 ____kasan_slab_free+0x131/0x180 mm/kasan/common.c:241 __kasan_slab_free+0x11/0x20 mm/kasan/common.c:249 kasan_slab_free include/linux/kasan.h:178 [inline] slab_free_hook mm/slub.c:1745 [inline] slab_free_freelist_hook mm/slub.c:1771 [inline] slab_free mm/slub.c:3686 [inline] kmem_cache_free+0x ---truncated--- | |||||
CVE-2025-38563 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: perf/core: Prevent VMA split of buffer mappings The perf mmap code is careful about mmap()'ing the user page with the ringbuffer and additionally the auxiliary buffer, when the event supports it. Once the first mapping is established, subsequent mapping have to use the same offset and the same size in both cases. The reference counting for the ringbuffer and the auxiliary buffer depends on this being correct. Though perf does not prevent that a related mapping is split via mmap(2), munmap(2) or mremap(2). A split of a VMA results in perf_mmap_open() calls, which take reference counts, but then the subsequent perf_mmap_close() calls are not longer fulfilling the offset and size checks. This leads to reference count leaks. As perf already has the requirement for subsequent mappings to match the initial mapping, the obvious consequence is that VMA splits, caused by resizing of a mapping or partial unmapping, have to be prevented. Implement the vm_operations_struct::may_split() callback and return unconditionally -EINVAL. That ensures that the mapping offsets and sizes cannot be changed after the fact. Remapping to a different fixed address with the same size is still possible as it takes the references for the new mapping and drops those of the old mapping. | |||||
CVE-2025-38560 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: x86/sev: Evict cache lines during SNP memory validation An SNP cache coherency vulnerability requires a cache line eviction mitigation when validating memory after a page state change to private. The specific mitigation is to touch the first and last byte of each 4K page that is being validated. There is no need to perform the mitigation when performing a page state change to shared and rescinding validation. CPUID bit Fn8000001F_EBX[31] defines the COHERENCY_SFW_NO CPUID bit that, when set, indicates that the software mitigation for this vulnerability is not needed. Implement the mitigation and invoke it when validating memory (making it private) and the COHERENCY_SFW_NO bit is not set, indicating the SNP guest is vulnerable. | |||||
CVE-2025-38599 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx() Fis possible Out-Of-Boundary access in mt7996_tx routine if link_id is set to IEEE80211_LINK_UNSPECIFIED | |||||
CVE-2025-38588 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ipv6: prevent infinite loop in rt6_nlmsg_size() While testing prior patch, I was able to trigger an infinite loop in rt6_nlmsg_size() in the following place: list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, fib6_siblings) { rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); } This is because fib6_del_route() and fib6_add_rt2node() uses list_del_rcu(), which can confuse rcu readers, because they might no longer see the head of the list. Restart the loop if f6i->fib6_nsiblings is zero. | |||||
CVE-2025-38559 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: platform/x86/intel/pmt: fix a crashlog NULL pointer access Usage of the intel_pmt_read() for binary sysfs, requires a pcidev. The current use of the endpoint value is only valid for telemetry endpoint usage. Without the ep, the crashlog usage causes the following NULL pointer exception: BUG: kernel NULL pointer dereference, address: 0000000000000000 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:intel_pmt_read+0x3b/0x70 [pmt_class] Code: Call Trace: <TASK> ? sysfs_kf_bin_read+0xc0/0xe0 kernfs_fop_read_iter+0xac/0x1a0 vfs_read+0x26d/0x350 ksys_read+0x6b/0xe0 __x64_sys_read+0x1d/0x30 x64_sys_call+0x1bc8/0x1d70 do_syscall_64+0x6d/0x110 Augment struct intel_pmt_entry with a pointer to the pcidev to avoid the NULL pointer exception. | |||||
CVE-2025-38587 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix possible infinite loop in fib6_info_uses_dev() fib6_info_uses_dev() seems to rely on RCU without an explicit protection. Like the prior fix in rt6_nlmsg_size(), we need to make sure fib6_del_route() or fib6_add_rt2node() have not removed the anchor from the list, or we risk an infinite loop. | |||||
CVE-2025-38572 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ipv6: reject malicious packets in ipv6_gso_segment() syzbot was able to craft a packet with very long IPv6 extension headers leading to an overflow of skb->transport_header. This 16bit field has a limited range. Add skb_reset_transport_header_careful() helper and use it from ipv6_gso_segment() WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline] WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Modules linked in: CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline] RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Call Trace: <TASK> skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110 skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 __skb_gso_segment+0x342/0x510 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950 validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000 sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329 __dev_xmit_skb net/core/dev.c:4102 [inline] __dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679 | |||||
CVE-2025-38594 | 2025-08-19 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix UAF on sva unbind with pending IOPFs Commit 17fce9d2336d ("iommu/vt-d: Put iopf enablement in domain attach path") disables IOPF on device by removing the device from its IOMMU's IOPF queue when the last IOPF-capable domain is detached from the device. Unfortunately, it did this in a wrong place where there are still pending IOPFs. As a result, a use-after-free error is potentially triggered and eventually a kernel panic with a kernel trace similar to the following: refcount_t: underflow; use-after-free. WARNING: CPU: 3 PID: 313 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 Workqueue: iopf_queue/dmar0-iopfq iommu_sva_handle_iopf Call Trace: <TASK> iopf_free_group+0xe/0x20 process_one_work+0x197/0x3d0 worker_thread+0x23a/0x350 ? rescuer_thread+0x4a0/0x4a0 kthread+0xf8/0x230 ? finish_task_switch.isra.0+0x81/0x260 ? kthreads_online_cpu+0x110/0x110 ? kthreads_online_cpu+0x110/0x110 ret_from_fork+0x13b/0x170 ? kthreads_online_cpu+0x110/0x110 ret_from_fork_asm+0x11/0x20 </TASK> ---[ end trace 0000000000000000 ]--- The intel_pasid_tear_down_entry() function is responsible for blocking hardware from generating new page faults and flushing all in-flight ones. Therefore, moving iopf_for_domain_remove() after this function should resolve this. |