Total
5316 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2023-20588 | 5 Amd, Debian, Fedoraproject and 2 more | 78 Athlon Gold 3150g, Athlon Gold 3150g Firmware, Athlon Gold 3150ge and 75 more | 2024-06-10 | N/A | 5.5 MEDIUM |
A division-by-zero error on some AMD processors can potentially return speculative data resulting in loss of confidentiality. | |||||
CVE-2023-51764 | 3 Fedoraproject, Postfix, Redhat | 3 Fedora, Postfix, Enterprise Linux | 2024-06-10 | N/A | 5.3 MEDIUM |
Postfix through 3.8.5 allows SMTP smuggling unless configured with smtpd_data_restrictions=reject_unauth_pipelining and smtpd_discard_ehlo_keywords=chunking (or certain other options that exist in recent versions). Remote attackers can use a published exploitation technique to inject e-mail messages with a spoofed MAIL FROM address, allowing bypass of an SPF protection mechanism. This occurs because Postfix supports <LF>.<CR><LF> but some other popular e-mail servers do not. To prevent attack variants (by always disallowing <LF> without <CR>), a different solution is required, such as the smtpd_forbid_bare_newline=yes option with a Postfix minimum version of 3.5.23, 3.6.13, 3.7.9, 3.8.4, or 3.9. | |||||
CVE-2022-39253 | 4 Apple, Debian, Fedoraproject and 1 more | 4 Xcode, Debian Linux, Fedora and 1 more | 2024-06-10 | N/A | 5.5 MEDIUM |
Git is an open source, scalable, distributed revision control system. Versions prior to 2.30.6, 2.31.5, 2.32.4, 2.33.5, 2.34.5, 2.35.5, 2.36.3, and 2.37.4 are subject to exposure of sensitive information to a malicious actor. When performing a local clone (where the source and target of the clone are on the same volume), Git copies the contents of the source's `$GIT_DIR/objects` directory into the destination by either creating hardlinks to the source contents, or copying them (if hardlinks are disabled via `--no-hardlinks`). A malicious actor could convince a victim to clone a repository with a symbolic link pointing at sensitive information on the victim's machine. This can be done either by having the victim clone a malicious repository on the same machine, or having them clone a malicious repository embedded as a bare repository via a submodule from any source, provided they clone with the `--recurse-submodules` option. Git does not create symbolic links in the `$GIT_DIR/objects` directory. The problem has been patched in the versions published on 2022-10-18, and backported to v2.30.x. Potential workarounds: Avoid cloning untrusted repositories using the `--local` optimization when on a shared machine, either by passing the `--no-local` option to `git clone` or cloning from a URL that uses the `file://` scheme. Alternatively, avoid cloning repositories from untrusted sources with `--recurse-submodules` or run `git config --global protocol.file.allow user`. | |||||
CVE-2019-17567 | 3 Apache, Fedoraproject, Oracle | 5 Http Server, Fedora, Enterprise Manager Ops Center and 2 more | 2024-06-10 | 5.0 MEDIUM | 5.3 MEDIUM |
Apache HTTP Server versions 2.4.6 to 2.4.46 mod_proxy_wstunnel configured on an URL that is not necessarily Upgraded by the origin server was tunneling the whole connection regardless, thus allowing for subsequent requests on the same connection to pass through with no HTTP validation, authentication or authorization possibly configured. | |||||
CVE-2023-20569 | 4 Amd, Debian, Fedoraproject and 1 more | 296 Epyc 72f3, Epyc 72f3 Firmware, Epyc 7313 and 293 more | 2024-06-10 | N/A | 4.7 MEDIUM |
A side channel vulnerability on some of the AMD CPUs may allow an attacker to influence the return address prediction. This may result in speculative execution at an attacker-controlled?address, potentially leading to information disclosure. | |||||
CVE-2021-22543 | 4 Debian, Fedoraproject, Linux and 1 more | 21 Debian Linux, Fedora, Linux Kernel and 18 more | 2024-05-29 | 4.6 MEDIUM | 7.8 HIGH |
An issue was discovered in Linux: KVM through Improper handling of VM_IO|VM_PFNMAP vmas in KVM can bypass RO checks and can lead to pages being freed while still accessible by the VMM and guest. This allows users with the ability to start and control a VM to read/write random pages of memory and can result in local privilege escalation. | |||||
CVE-2021-31957 | 2 Fedoraproject, Microsoft | 4 Fedora, .net, .net Core and 1 more | 2024-05-29 | 5.0 MEDIUM | 5.9 MEDIUM |
ASP.NET Core Denial of Service Vulnerability | |||||
CVE-2023-21538 | 2 Fedoraproject, Microsoft | 3 Fedora, .net, Powershell | 2024-05-29 | N/A | 7.5 HIGH |
.NET Denial of Service Vulnerability | |||||
CVE-2024-27021 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: r8169: fix LED-related deadlock on module removal Binding devm_led_classdev_register() to the netdev is problematic because on module removal we get a RTNL-related deadlock. Fix this by avoiding the device-managed LED functions. Note: We can safely call led_classdev_unregister() for a LED even if registering it failed, because led_classdev_unregister() detects this and is a no-op in this case. | |||||
CVE-2024-27016 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: validate pppoe header Ensure there is sufficient room to access the protocol field of the PPPoe header. Validate it once before the flowtable lookup, then use a helper function to access protocol field. | |||||
CVE-2024-26987 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix deadlock when hugetlb_optimize_vmemmap is enabled When I did hard offline test with hugetlb pages, below deadlock occurs: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-11409-gf6cef5f8c37f #1 Not tainted ------------------------------------------------------ bash/46904 is trying to acquire lock: ffffffffabe68910 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_slow_dec+0x16/0x60 but task is already holding lock: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (pcp_batch_high_lock){+.+.}-{3:3}: __mutex_lock+0x6c/0x770 page_alloc_cpu_online+0x3c/0x70 cpuhp_invoke_callback+0x397/0x5f0 __cpuhp_invoke_callback_range+0x71/0xe0 _cpu_up+0xeb/0x210 cpu_up+0x91/0xe0 cpuhp_bringup_mask+0x49/0xb0 bringup_nonboot_cpus+0xb7/0xe0 smp_init+0x25/0xa0 kernel_init_freeable+0x15f/0x3e0 kernel_init+0x15/0x1b0 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcp_batch_high_lock); lock(cpu_hotplug_lock); lock(pcp_batch_high_lock); rlock(cpu_hotplug_lock); *** DEADLOCK *** 5 locks held by bash/46904: #0: ffff98f6c3bb23f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0 #1: ffff98f6c328e488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0 #2: ffff98ef83b31890 (kn->active#113){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0 #3: ffffffffabf9db48 (mf_mutex){+.+.}-{3:3}, at: memory_failure+0x44/0xc70 #4: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 stack backtrace: CPU: 10 PID: 46904 Comm: bash Kdump: loaded Not tainted 6.8.0-11409-gf6cef5f8c37f #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 check_noncircular+0x129/0x140 __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fc862314887 Code: 10 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24 RSP: 002b:00007fff19311268 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007fc862314887 RDX: 000000000000000c RSI: 000056405645fe10 RDI: 0000000000000001 RBP: 000056405645fe10 R08: 00007fc8623d1460 R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c R13: 00007fc86241b780 R14: 00007fc862417600 R15: 00007fc862416a00 In short, below scene breaks the ---truncated--- | |||||
CVE-2024-27015 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: incorrect pppoe tuple pppoe traffic reaching ingress path does not match the flowtable entry because the pppoe header is expected to be at the network header offset. This bug causes a mismatch in the flow table lookup, so pppoe packets enter the classical forwarding path. | |||||
CVE-2024-27014 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Prevent deadlock while disabling aRFS When disabling aRFS under the `priv->state_lock`, any scheduled aRFS works are canceled using the `cancel_work_sync` function, which waits for the work to end if it has already started. However, while waiting for the work handler, the handler will try to acquire the `state_lock` which is already acquired. The worker acquires the lock to delete the rules if the state is down, which is not the worker's responsibility since disabling aRFS deletes the rules. Add an aRFS state variable, which indicates whether the aRFS is enabled and prevent adding rules when the aRFS is disabled. Kernel log: ====================================================== WARNING: possible circular locking dependency detected 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Tainted: G I ------------------------------------------------------ ethtool/386089 is trying to acquire lock: ffff88810f21ce68 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}, at: __flush_work+0x74/0x4e0 but task is already holding lock: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&priv->state_lock){+.+.}-{3:3}: __mutex_lock+0x80/0xc90 arfs_handle_work+0x4b/0x3b0 [mlx5_core] process_one_work+0x1dc/0x4a0 worker_thread+0x1bf/0x3c0 kthread+0xd7/0x100 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 -> #0 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}: __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 __flush_work+0x7a/0x4e0 __cancel_work_timer+0x131/0x1c0 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1a1/0x270 netlink_sendmsg+0x214/0x460 __sock_sendmsg+0x38/0x60 __sys_sendto+0x113/0x170 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x46/0x4e other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); *** DEADLOCK *** 3 locks held by ethtool/386089: #0: ffffffff82ea7210 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40 #1: ffffffff82e94c88 (rtnl_mutex){+.+.}-{3:3}, at: ethnl_default_set_doit+0xd3/0x240 #2: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] stack backtrace: CPU: 15 PID: 386089 Comm: ethtool Tainted: G I 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x60/0xa0 check_noncircular+0x144/0x160 __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 ? __flush_work+0x74/0x4e0 ? save_trace+0x3e/0x360 ? __flush_work+0x74/0x4e0 __flush_work+0x7a/0x4e0 ? __flush_work+0x74/0x4e0 ? __lock_acquire+0xa78/0x2c80 ? lock_acquire+0xd0/0x2b0 ? mark_held_locks+0x49/0x70 __cancel_work_timer+0x131/0x1c0 ? mark_held_locks+0x49/0x70 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 ? ethn ---truncated--- | |||||
CVE-2024-26986 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-05-23 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in create_process failure Fix memory leak due to a leaked mmget reference on an error handling code path that is triggered when attempting to create KFD processes while a GPU reset is in progress. | |||||
CVE-2023-4133 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2024-05-22 | N/A | 5.5 MEDIUM |
A use-after-free vulnerability was found in the cxgb4 driver in the Linux kernel. The bug occurs when the cxgb4 device is detaching due to a possible rearming of the flower_stats_timer from the work queue. This flaw allows a local user to crash the system, causing a denial of service condition. | |||||
CVE-2022-1055 | 5 Canonical, Fedoraproject, Linux and 2 more | 20 Ubuntu Linux, Fedora, Linux Kernel and 17 more | 2024-05-21 | 4.6 MEDIUM | 7.8 HIGH |
A use-after-free exists in the Linux Kernel in tc_new_tfilter that could allow a local attacker to gain privilege escalation. The exploit requires unprivileged user namespaces. We recommend upgrading past commit 04c2a47ffb13c29778e2a14e414ad4cb5a5db4b5 | |||||
CVE-2024-0443 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2024-05-20 | N/A | 5.5 MEDIUM |
A flaw was found in the blkgs destruction path in block/blk-cgroup.c in the Linux kernel, leading to a cgroup blkio memory leakage problem. When a cgroup is being destroyed, cgroup_rstat_flush() is only called at css_release_work_fn(), which is called when the blkcg reference count reaches 0. This circular dependency will prevent blkcg and some blkgs from being freed after they are made offline. This issue may allow an attacker with a local access to cause system instability, such as an out of memory error. | |||||
CVE-2023-7104 | 2 Fedoraproject, Sqlite | 2 Fedora, Sqlite | 2024-05-17 | N/A | 7.3 HIGH |
A vulnerability was found in SQLite SQLite3 up to 3.43.0 and classified as critical. This issue affects the function sessionReadRecord of the file ext/session/sqlite3session.c of the component make alltest Handler. The manipulation leads to heap-based buffer overflow. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-248999. | |||||
CVE-2022-4318 | 3 Fedoraproject, Kubernetes, Redhat | 8 Extra Packages For Enterprise Linux, Fedora, Cri-o and 5 more | 2024-05-03 | N/A | 7.8 HIGH |
A vulnerability was found in cri-o. This issue allows the addition of arbitrary lines into /etc/passwd by use of a specially crafted environment variable. | |||||
CVE-2023-43665 | 2 Djangoproject, Fedoraproject | 2 Django, Fedora | 2024-05-01 | N/A | 7.5 HIGH |
In Django 3.2 before 3.2.22, 4.1 before 4.1.12, and 4.2 before 4.2.6, the django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |