Vulnerabilities (CVE)

Filtered by vendor Debian Subscribe
Total 9332 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2018-17480 3 Debian, Google, Redhat 5 Debian Linux, Chrome, Enterprise Linux Desktop and 2 more 2025-03-06 6.8 MEDIUM 8.8 HIGH
Execution of user supplied Javascript during array deserialization leading to an out of bounds write in V8 in Google Chrome prior to 71.0.3578.80 allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page.
CVE-2023-34059 2 Debian, Vmware 2 Debian Linux, Open Vm Tools 2025-03-06 N/A 7.0 HIGH
open-vm-tools contains a file descriptor hijack vulnerability in the vmware-user-suid-wrapper. A malicious actor with non-root privileges may be able to hijack the /dev/uinput file descriptor allowing them to simulate user inputs.
CVE-2023-34058 4 Debian, Fedoraproject, Microsoft and 1 more 5 Debian Linux, Fedora, Windows and 2 more 2025-03-06 N/A 7.5 HIGH
VMware Tools contains a SAML token signature bypass vulnerability. A malicious actor that has been granted Guest Operation Privileges https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-security/GUID-6A952214-0E5E-4CCF-9D2A-90948FF643EC.html  in a target virtual machine may be able to elevate their privileges if that target virtual machine has been assigned a more privileged Guest Alias https://vdc-download.vmware.com/vmwb-repository/dcr-public/d1902b0e-d479-46bf-8ac9-cee0e31e8ec0/07ce8dbd-db48-4261-9b8f-c6d3ad8ba472/vim.vm.guest.AliasManager.html .
CVE-2023-1161 2 Debian, Wireshark 2 Debian Linux, Wireshark 2025-03-05 N/A 7.1 HIGH
ISO 15765 and ISO 10681 dissector crash in Wireshark 4.0.0 to 4.0.3 and 3.6.0 to 3.6.11 allows denial of service via packet injection or crafted capture file
CVE-2024-24858 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-05 N/A 5.3 MEDIUM
A race condition was found in the Linux kernel's net/bluetooth in {conn,adv}_{min,max}_interval_set() function. This can result in I2cap connection or broadcast abnormality issue, possibly leading to denial of service.
CVE-2024-24857 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-05 N/A 6.8 MEDIUM
A race condition was found in the Linux kernel's net/bluetooth device driver in conn_info_{min,max}_age_set() function. This can result in integrity overflow issue, possibly leading to bluetooth connection abnormality or denial of service.
CVE-2024-26973 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: fat: fix uninitialized field in nostale filehandles When fat_encode_fh_nostale() encodes file handle without a parent it stores only first 10 bytes of the file handle. However the length of the file handle must be a multiple of 4 so the file handle is actually 12 bytes long and the last two bytes remain uninitialized. This is not great at we potentially leak uninitialized information with the handle to userspace. Properly initialize the full handle length.
CVE-2024-26931 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix command flush on cable pull System crash due to command failed to flush back to SCSI layer. BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 27 PID: 793455 Comm: kworker/u130:6 Kdump: loaded Tainted: G OE --------- - - 4.18.0-372.9.1.el8.x86_64 #1 Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021 Workqueue: nvme-wq nvme_fc_connect_ctrl_work [nvme_fc] RIP: 0010:__wake_up_common+0x4c/0x190 Code: 24 10 4d 85 c9 74 0a 41 f6 01 04 0f 85 9d 00 00 00 48 8b 43 08 48 83 c3 08 4c 8d 48 e8 49 8d 41 18 48 39 c3 0f 84 f0 00 00 00 <49> 8b 41 18 89 54 24 08 31 ed 4c 8d 70 e8 45 8b 29 41 f6 c5 04 75 RSP: 0018:ffff95f3e0cb7cd0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff8b08d3b26328 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8b08d3b26320 RBP: 0000000000000001 R08: 0000000000000000 R09: ffffffffffffffe8 R10: 0000000000000000 R11: ffff95f3e0cb7a60 R12: ffff95f3e0cb7d20 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8b2fdf6c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000002f1e410002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: __wake_up_common_lock+0x7c/0xc0 qla_nvme_ls_req+0x355/0x4c0 [qla2xxx] qla2xxx [0000:12:00.1]-f084:3: qlt_free_session_done: se_sess 0000000000000000 / sess ffff8ae1407ca000 from port 21:32:00:02:ac:07:ee:b8 loop_id 0x02 s_id 01:02:00 logout 1 keep 0 els_logo 0 ? __nvme_fc_send_ls_req+0x260/0x380 [nvme_fc] qla2xxx [0000:12:00.1]-207d:3: FCPort 21:32:00:02:ac:07:ee:b8 state transitioned from ONLINE to LOST - portid=010200. ? nvme_fc_send_ls_req.constprop.42+0x1a/0x45 [nvme_fc] qla2xxx [0000:12:00.1]-2109:3: qla2x00_schedule_rport_del 21320002ac07eeb8. rport ffff8ae598122000 roles 1 ? nvme_fc_connect_ctrl_work.cold.63+0x1e3/0xa7d [nvme_fc] qla2xxx [0000:12:00.1]-f084:3: qlt_free_session_done: se_sess 0000000000000000 / sess ffff8ae14801e000 from port 21:32:01:02:ad:f7:ee:b8 loop_id 0x04 s_id 01:02:01 logout 1 keep 0 els_logo 0 ? __switch_to+0x10c/0x450 ? process_one_work+0x1a7/0x360 qla2xxx [0000:12:00.1]-207d:3: FCPort 21:32:01:02:ad:f7:ee:b8 state transitioned from ONLINE to LOST - portid=010201. ? worker_thread+0x1ce/0x390 ? create_worker+0x1a0/0x1a0 qla2xxx [0000:12:00.1]-2109:3: qla2x00_schedule_rport_del 21320102adf7eeb8. rport ffff8ae3b2312800 roles 70 ? kthread+0x10a/0x120 qla2xxx [0000:12:00.1]-2112:3: qla_nvme_unregister_remote_port: unregister remoteport on ffff8ae14801e000 21320102adf7eeb8 ? set_kthread_struct+0x40/0x40 qla2xxx [0000:12:00.1]-2110:3: remoteport_delete of ffff8ae14801e000 21320102adf7eeb8 completed. ? ret_from_fork+0x1f/0x40 qla2xxx [0000:12:00.1]-f086:3: qlt_free_session_done: waiting for sess ffff8ae14801e000 logout The system was under memory stress where driver was not able to allocate an SRB to carry out error recovery of cable pull. The failure to flush causes upper layer to start modifying scsi_cmnd. When the system frees up some memory, the subsequent cable pull trigger another command flush. At this point the driver access a null pointer when attempting to DMA unmap the SGL. Add a check to make sure commands are flush back on session tear down to prevent the null pointer access.
CVE-2024-26859 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/bnx2x: Prevent access to a freed page in page_pool Fix race condition leading to system crash during EEH error handling During EEH error recovery, the bnx2x driver's transmit timeout logic could cause a race condition when handling reset tasks. The bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(), which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload() SGEs are freed using bnx2x_free_rx_sge_range(). However, this could overlap with the EEH driver's attempt to reset the device using bnx2x_io_slot_reset(), which also tries to free SGEs. This race condition can result in system crashes due to accessing freed memory locations in bnx2x_free_rx_sge() 799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp, 800 struct bnx2x_fastpath *fp, u16 index) 801 { 802 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 803 struct page *page = sw_buf->page; .... where sw_buf was set to NULL after the call to dma_unmap_page() by the preceding thread. EEH: Beginning: 'slot_reset' PCI 0011:01:00.0#10000: EEH: Invoking bnx2x->slot_reset() bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing... bnx2x 0011:01:00.0: enabling device (0140 -> 0142) bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --> driver unload Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc0080000025065fc Oops: Kernel access of bad area, sig: 11 [#1] ..... Call Trace: [c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable) [c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0 [c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550 [c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60 [c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170 [c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0 [c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64 To solve this issue, we need to verify page pool allocations before freeing.
CVE-2024-26874 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix a null pointer crash in mtk_drm_crtc_finish_page_flip It's possible that mtk_crtc->event is NULL in mtk_drm_crtc_finish_page_flip(). pending_needs_vblank value is set by mtk_crtc->event, but in mtk_drm_crtc_atomic_flush(), it's is not guarded by the same lock in mtk_drm_finish_page_flip(), thus a race condition happens. Consider the following case: CPU1 CPU2 step 1: mtk_drm_crtc_atomic_begin() mtk_crtc->event is not null, step 1: mtk_drm_crtc_atomic_flush: mtk_drm_crtc_update_config( !!mtk_crtc->event) step 2: mtk_crtc_ddp_irq -> mtk_drm_finish_page_flip: lock mtk_crtc->event set to null, pending_needs_vblank set to false unlock pending_needs_vblank set to true, step 2: mtk_crtc_ddp_irq -> mtk_drm_finish_page_flip called again, pending_needs_vblank is still true //null pointer Instead of guarding the entire mtk_drm_crtc_atomic_flush(), it's more efficient to just check if mtk_crtc->event is null before use.
CVE-2024-26862 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: packet: annotate data-races around ignore_outgoing ignore_outgoing is read locklessly from dev_queue_xmit_nit() and packet_getsockopt() Add appropriate READ_ONCE()/WRITE_ONCE() annotations. syzbot reported: BUG: KCSAN: data-race in dev_queue_xmit_nit / packet_setsockopt write to 0xffff888107804542 of 1 bytes by task 22618 on cpu 0: packet_setsockopt+0xd83/0xfd0 net/packet/af_packet.c:4003 do_sock_setsockopt net/socket.c:2311 [inline] __sys_setsockopt+0x1d8/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0x66/0x80 net/socket.c:2340 do_syscall_64+0xd3/0x1d0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 read to 0xffff888107804542 of 1 bytes by task 27 on cpu 1: dev_queue_xmit_nit+0x82/0x620 net/core/dev.c:2248 xmit_one net/core/dev.c:3527 [inline] dev_hard_start_xmit+0xcc/0x3f0 net/core/dev.c:3547 __dev_queue_xmit+0xf24/0x1dd0 net/core/dev.c:4335 dev_queue_xmit include/linux/netdevice.h:3091 [inline] batadv_send_skb_packet+0x264/0x300 net/batman-adv/send.c:108 batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127 batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:392 [inline] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:420 [inline] batadv_iv_send_outstanding_bat_ogm_packet+0x3f0/0x4b0 net/batman-adv/bat_iv_ogm.c:1700 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0x465/0x990 kernel/workqueue.c:3335 worker_thread+0x526/0x730 kernel/workqueue.c:3416 kthread+0x1d1/0x210 kernel/kthread.c:388 ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243 value changed: 0x00 -> 0x01 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 27 Comm: kworker/u8:1 Tainted: G W 6.8.0-syzkaller-08073-g480e035fc4c7 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet
CVE-2024-26872 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: RDMA/srpt: Do not register event handler until srpt device is fully setup Upon rare occasions, KASAN reports a use-after-free Write in srpt_refresh_port(). This seems to be because an event handler is registered before the srpt device is fully setup and a race condition upon error may leave a partially setup event handler in place. Instead, only register the event handler after srpt device initialization is complete.
CVE-2024-26999 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: serial/pmac_zilog: Remove flawed mitigation for rx irq flood The mitigation was intended to stop the irq completely. That may be better than a hard lock-up but it turns out that you get a crash anyway if you're using pmac_zilog as a serial console: ttyPZ0: pmz: rx irq flood ! BUG: spinlock recursion on CPU#0, swapper/0 That's because the pr_err() call in pmz_receive_chars() results in pmz_console_write() attempting to lock a spinlock already locked in pmz_interrupt(). With CONFIG_DEBUG_SPINLOCK=y, this produces a fatal BUG splat. The spinlock in question is the one in struct uart_port. Even when it's not fatal, the serial port rx function ceases to work. Also, the iteration limit doesn't play nicely with QEMU, as can be seen in the bug report linked below. A web search for other reports of the error message "pmz: rx irq flood" didn't produce anything. So I don't think this code is needed any more. Remove it.
CVE-2024-26665 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-03-03 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: tunnels: fix out of bounds access when building IPv6 PMTU error If the ICMPv6 error is built from a non-linear skb we get the following splat, BUG: KASAN: slab-out-of-bounds in do_csum+0x220/0x240 Read of size 4 at addr ffff88811d402c80 by task netperf/820 CPU: 0 PID: 820 Comm: netperf Not tainted 6.8.0-rc1+ #543 ... kasan_report+0xd8/0x110 do_csum+0x220/0x240 csum_partial+0xc/0x20 skb_tunnel_check_pmtu+0xeb9/0x3280 vxlan_xmit_one+0x14c2/0x4080 vxlan_xmit+0xf61/0x5c00 dev_hard_start_xmit+0xfb/0x510 __dev_queue_xmit+0x7cd/0x32a0 br_dev_queue_push_xmit+0x39d/0x6a0 Use skb_checksum instead of csum_partial who cannot deal with non-linear SKBs.
CVE-2022-32893 5 Apple, Debian, Fedoraproject and 2 more 8 Ipados, Iphone Os, Macos and 5 more 2025-02-28 N/A 8.8 HIGH
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 15.6.1 and iPadOS 15.6.1, macOS Monterey 12.5.1, Safari 15.6.1. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited.
CVE-2021-1871 3 Apple, Debian, Fedoraproject 6 Ipados, Iphone Os, Mac Os X and 3 more 2025-02-28 7.5 HIGH 9.8 CRITICAL
A logic issue was addressed with improved restrictions. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, iOS 14.4 and iPadOS 14.4. A remote attacker may be able to cause arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited..
CVE-2021-3735 2 Debian, Qemu 2 Debian Linux, Qemu 2025-02-28 N/A 4.4 MEDIUM
A deadlock issue was found in the AHCI controller device of QEMU. It occurs on a software reset (ahci_reset_port) while handling a host-to-device Register FIS (Frame Information Structure) packet from the guest. A privileged user inside the guest could use this flaw to hang the QEMU process on the host, resulting in a denial of service condition. The highest threat from this vulnerability is to system availability.
CVE-2024-26790 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-02-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read There is chip (ls1028a) errata: The SoC may hang on 16 byte unaligned read transactions by QDMA. Unaligned read transactions initiated by QDMA may stall in the NOC (Network On-Chip), causing a deadlock condition. Stalled transactions will trigger completion timeouts in PCIe controller. Workaround: Enable prefetch by setting the source descriptor prefetchable bit ( SD[PF] = 1 ). Implement this workaround.
CVE-2024-26753 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-02-27 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: crypto: virtio/akcipher - Fix stack overflow on memcpy sizeof(struct virtio_crypto_akcipher_session_para) is less than sizeof(struct virtio_crypto_op_ctrl_req::u), copying more bytes from stack variable leads stack overflow. Clang reports this issue by commands: make -j CC=clang-14 mrproper >/dev/null 2>&1 make -j O=/tmp/crypto-build CC=clang-14 allmodconfig >/dev/null 2>&1 make -j O=/tmp/crypto-build W=1 CC=clang-14 drivers/crypto/virtio/ virtio_crypto_akcipher_algs.o
CVE-2024-26766 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-02-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix sdma.h tx->num_descs off-by-one error Unfortunately the commit `fd8958efe877` introduced another error causing the `descs` array to overflow. This reults in further crashes easily reproducible by `sendmsg` system call. [ 1080.836473] general protection fault, probably for non-canonical address 0x400300015528b00a: 0000 [#1] PREEMPT SMP PTI [ 1080.869326] RIP: 0010:hfi1_ipoib_build_ib_tx_headers.constprop.0+0xe1/0x2b0 [hfi1] -- [ 1080.974535] Call Trace: [ 1080.976990] <TASK> [ 1081.021929] hfi1_ipoib_send_dma_common+0x7a/0x2e0 [hfi1] [ 1081.027364] hfi1_ipoib_send_dma_list+0x62/0x270 [hfi1] [ 1081.032633] hfi1_ipoib_send+0x112/0x300 [hfi1] [ 1081.042001] ipoib_start_xmit+0x2a9/0x2d0 [ib_ipoib] [ 1081.046978] dev_hard_start_xmit+0xc4/0x210 -- [ 1081.148347] __sys_sendmsg+0x59/0xa0 crash> ipoib_txreq 0xffff9cfeba229f00 struct ipoib_txreq { txreq = { list = { next = 0xffff9cfeba229f00, prev = 0xffff9cfeba229f00 }, descp = 0xffff9cfeba229f40, coalesce_buf = 0x0, wait = 0xffff9cfea4e69a48, complete = 0xffffffffc0fe0760 <hfi1_ipoib_sdma_complete>, packet_len = 0x46d, tlen = 0x0, num_desc = 0x0, desc_limit = 0x6, next_descq_idx = 0x45c, coalesce_idx = 0x0, flags = 0x0, descs = {{ qw = {0x8024000120dffb00, 0x4} # SDMA_DESC0_FIRST_DESC_FLAG (bit 63) }, { qw = { 0x3800014231b108, 0x4} }, { qw = { 0x310000e4ee0fcf0, 0x8} }, { qw = { 0x3000012e9f8000, 0x8} }, { qw = { 0x59000dfb9d0000, 0x8} }, { qw = { 0x78000e02e40000, 0x8} }} }, sdma_hdr = 0x400300015528b000, <<< invalid pointer in the tx request structure sdma_status = 0x0, SDMA_DESC0_LAST_DESC_FLAG (bit 62) complete = 0x0, priv = 0x0, txq = 0xffff9cfea4e69880, skb = 0xffff9d099809f400 } If an SDMA send consists of exactly 6 descriptors and requires dword padding (in the 7th descriptor), the sdma_txreq descriptor array is not properly expanded and the packet will overflow into the container structure. This results in a panic when the send completion runs. The exact panic varies depending on what elements of the container structure get corrupted. The fix is to use the correct expression in _pad_sdma_tx_descs() to test the need to expand the descriptor array. With this patch the crashes are no longer reproducible and the machine is stable.