Total
9187 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2020-29480 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 2.1 LOW | 2.3 LOW |
An issue was discovered in Xen through 4.14.x. Neither xenstore implementation does any permission checks when reporting a xenstore watch event. A guest administrator can watch the root xenstored node, which will cause notifications for every created, modified, and deleted key. A guest administrator can also use the special watches, which will cause a notification every time a domain is created and destroyed. Data may include: number, type, and domids of other VMs; existence and domids of driver domains; numbers of virtual interfaces, block devices, vcpus; existence of virtual framebuffers and their backend style (e.g., existence of VNC service); Xen VM UUIDs for other domains; timing information about domain creation and device setup; and some hints at the backend provisioning of VMs and their devices. The watch events do not contain values stored in xenstore, only key names. A guest administrator can observe non-sensitive domain and device lifecycle events relating to other guests. This information allows some insight into overall system configuration (including the number and general nature of other guests), and configuration of other guests (including the number and general nature of other guests' devices). This information might be commercially interesting or might make other attacks easier. There is not believed to be exposure of sensitive data. Specifically, there is no exposure of VNC passwords, port numbers, pathnames in host and guest filesystems, cryptographic keys, or within-guest data. | |||||
CVE-2020-27845 | 4 Debian, Fedoraproject, Oracle and 1 more | 4 Debian Linux, Fedora, Outside In Technology and 1 more | 2023-11-07 | 4.3 MEDIUM | 5.5 MEDIUM |
There's a flaw in src/lib/openjp2/pi.c of openjpeg in versions prior to 2.4.0. If an attacker is able to provide untrusted input to openjpeg's conversion/encoding functionality, they could cause an out-of-bounds read. The highest impact of this flaw is to application availability. | |||||
CVE-2020-28368 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 2.1 LOW | 4.4 MEDIUM |
Xen through 4.14.x allows guest OS administrators to obtain sensitive information (such as AES keys from outside the guest) via a side-channel attack on a power/energy monitoring interface, aka a "Platypus" attack. NOTE: there is only one logically independent fix: to change the access control for each such interface in Xen. | |||||
CVE-2020-2781 | 7 Canonical, Debian, Fedoraproject and 4 more | 21 Ubuntu Linux, Debian Linux, Fedora and 18 more | 2023-11-07 | 5.0 MEDIUM | 5.3 MEDIUM |
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: JSSE). Supported versions that are affected are Java SE: 7u251, 8u241, 11.0.6 and 14; Java SE Embedded: 8u241. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTPS to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). | |||||
CVE-2020-29361 | 2 Debian, P11-kit Project | 2 Debian Linux, P11-kit | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
An issue was discovered in p11-kit 0.21.1 through 0.23.21. Multiple integer overflows have been discovered in the array allocations in the p11-kit library and the p11-kit list command, where overflow checks are missing before calling realloc or calloc. | |||||
CVE-2020-28034 | 3 Debian, Fedoraproject, Wordpress | 3 Debian Linux, Fedora, Wordpress | 2023-11-07 | 4.3 MEDIUM | 6.1 MEDIUM |
WordPress before 5.5.2 allows XSS associated with global variables. | |||||
CVE-2020-27843 | 4 Debian, Fedoraproject, Oracle and 1 more | 4 Debian Linux, Fedora, Outside In Technology and 1 more | 2023-11-07 | 7.1 HIGH | 5.5 MEDIUM |
A flaw was found in OpenJPEG in versions prior to 2.4.0. This flaw allows an attacker to provide specially crafted input to the conversion or encoding functionality, causing an out-of-bounds read. The highest threat from this vulnerability is system availability. | |||||
CVE-2020-29570 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 4.9 MEDIUM | 6.2 MEDIUM |
An issue was discovered in Xen through 4.14.x. Recording of the per-vCPU control block mapping maintained by Xen and that of pointers into the control block is reversed. The consumer assumes, seeing the former initialized, that the latter are also ready for use. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. | |||||
CVE-2020-26571 | 3 Debian, Fedoraproject, Opensc Project | 3 Debian Linux, Fedora, Opensc | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
The gemsafe GPK smart card software driver in OpenSC before 0.21.0-rc1 has a stack-based buffer overflow in sc_pkcs15emu_gemsafeGPK_init. | |||||
CVE-2020-25603 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.6 MEDIUM | 7.8 HIGH |
An issue was discovered in Xen through 4.14.x. There are missing memory barriers when accessing/allocating an event channel. Event channels control structures can be accessed lockless as long as the port is considered to be valid. Such a sequence is missing an appropriate memory barrier (e.g., smp_*mb()) to prevent both the compiler and CPU from re-ordering access. A malicious guest may be able to cause a hypervisor crash resulting in a Denial of Service (DoS). Information leak and privilege escalation cannot be excluded. Systems running all versions of Xen are affected. Whether a system is vulnerable will depend on the CPU and compiler used to build Xen. For all systems, the presence and the scope of the vulnerability depend on the precise re-ordering performed by the compiler used to build Xen. We have not been able to survey compilers; consequently we cannot say which compiler(s) might produce vulnerable code (with which code generation options). GCC documentation clearly suggests that re-ordering is possible. Arm systems will also be vulnerable if the CPU is able to re-order memory access. Please consult your CPU vendor. x86 systems are only vulnerable if a compiler performs re-ordering. | |||||
CVE-2020-27674 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 4.6 MEDIUM | 5.3 MEDIUM |
An issue was discovered in Xen through 4.14.x allowing x86 PV guest OS users to gain guest OS privileges by modifying kernel memory contents, because invalidation of TLB entries is mishandled during use of an INVLPG-like attack technique. | |||||
CVE-2020-25602 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.6 MEDIUM | 6.0 MEDIUM |
An issue was discovered in Xen through 4.14.x. An x86 PV guest can trigger a host OS crash when handling guest access to MSR_MISC_ENABLE. When a guest accesses certain Model Specific Registers, Xen first reads the value from hardware to use as the basis for auditing the guest access. For the MISC_ENABLE MSR, which is an Intel specific MSR, this MSR read is performed without error handling for a #GP fault, which is the consequence of trying to read this MSR on non-Intel hardware. A buggy or malicious PV guest administrator can crash Xen, resulting in a host Denial of Service. Only x86 systems are vulnerable. ARM systems are not vulnerable. Only Xen versions 4.11 and onwards are vulnerable. 4.10 and earlier are not vulnerable. Only x86 systems that do not implement the MISC_ENABLE MSR (0x1a0) are vulnerable. AMD and Hygon systems do not implement this MSR and are vulnerable. Intel systems do implement this MSR and are not vulnerable. Other manufacturers have not been checked. Only x86 PV guests can exploit the vulnerability. x86 HVM/PVH guests cannot exploit the vulnerability. | |||||
CVE-2020-25599 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 4.4 MEDIUM | 7.0 HIGH |
An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory accesses or triggering of bug checks. In particular, x86 PV guests may be able to elevate their privilege to that of the host. Host and guest crashes are also possible, leading to a Denial of Service (DoS). Information leaks cannot be ruled out. All Xen versions from 4.5 onwards are vulnerable. Xen versions 4.4 and earlier are not vulnerable. | |||||
CVE-2020-25595 | 4 Debian, Fedoraproject, Opensuse and 1 more | 4 Debian Linux, Fedora, Leap and 1 more | 2023-11-07 | 6.1 MEDIUM | 7.8 HIGH |
An issue was discovered in Xen through 4.14.x. The PCI passthrough code improperly uses register data. Code paths in Xen's MSI handling have been identified that act on unsanitized values read back from device hardware registers. While devices strictly compliant with PCI specifications shouldn't be able to affect these registers, experience shows that it's very common for devices to have out-of-spec "backdoor" operations that can affect the result of these reads. A not fully trusted guest may be able to crash Xen, leading to a Denial of Service (DoS) for the entire system. Privilege escalation and information leaks cannot be excluded. All versions of Xen supporting PCI passthrough are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only guests with passed through PCI devices may be able to leverage the vulnerability. Only systems passing through devices with out-of-spec ("backdoor") functionality can cause issues. Experience shows that such out-of-spec functionality is common; unless you have reason to believe that your device does not have such functionality, it's better to assume that it does. | |||||
CVE-2020-27216 | 6 Apache, Debian, Eclipse and 3 more | 19 Beam, Debian Linux, Jetty and 16 more | 2023-11-07 | 4.4 MEDIUM | 7.0 HIGH |
In Eclipse Jetty versions 1.0 thru 9.4.32.v20200930, 10.0.0.alpha1 thru 10.0.0.beta2, and 11.0.0.alpha1 thru 11.0.0.beta2O, on Unix like systems, the system's temporary directory is shared between all users on that system. A collocated user can observe the process of creating a temporary sub directory in the shared temporary directory and race to complete the creation of the temporary subdirectory. If the attacker wins the race then they will have read and write permission to the subdirectory used to unpack web applications, including their WEB-INF/lib jar files and JSP files. If any code is ever executed out of this temporary directory, this can lead to a local privilege escalation vulnerability. | |||||
CVE-2020-25650 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
A flaw was found in the way the spice-vdagentd daemon handled file transfers from the host system to the virtual machine. Any unprivileged local guest user with access to the UNIX domain socket path `/run/spice-vdagentd/spice-vdagent-sock` could use this flaw to perform a memory denial of service for spice-vdagentd or even other processes in the VM system. The highest threat from this vulnerability is to system availability. This flaw affects spice-vdagent versions 0.20 and previous versions. | |||||
CVE-2020-26935 | 4 Debian, Fedoraproject, Opensuse and 1 more | 5 Debian Linux, Fedora, Backports Sle and 2 more | 2023-11-07 | 7.5 HIGH | 9.8 CRITICAL |
An issue was discovered in SearchController in phpMyAdmin before 4.9.6 and 5.x before 5.0.3. A SQL injection vulnerability was discovered in how phpMyAdmin processes SQL statements in the search feature. An attacker could use this flaw to inject malicious SQL in to a query. | |||||
CVE-2020-25219 | 5 Canonical, Debian, Fedoraproject and 2 more | 5 Ubuntu Linux, Debian Linux, Fedora and 2 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
url::recvline in url.cpp in libproxy 0.4.x through 0.4.15 allows a remote HTTP server to trigger uncontrolled recursion via a response composed of an infinite stream that lacks a newline character. This leads to stack exhaustion. | |||||
CVE-2020-25653 | 3 Debian, Fedoraproject, Spice-space | 3 Debian Linux, Fedora, Spice-vdagent | 2023-11-07 | 5.4 MEDIUM | 6.3 MEDIUM |
A race condition vulnerability was found in the way the spice-vdagentd daemon handled new client connections. This flaw may allow an unprivileged local guest user to become the active agent for spice-vdagentd, possibly resulting in a denial of service or information leakage from the host. The highest threat from this vulnerability is to data confidentiality as well as system availability. This flaw affects spice-vdagent versions 0.20 and prior. | |||||
CVE-2020-25684 | 4 Arista, Debian, Fedoraproject and 1 more | 4 Eos, Debian Linux, Fedora and 1 more | 2023-11-07 | 4.3 MEDIUM | 3.7 LOW |
A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries. However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. |