Vulnerabilities (CVE)

Filtered by vendor Debian Subscribe
Filtered by product Debian Linux
Total 9187 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-40617 5 Canonical, Debian, Fedoraproject and 2 more 5 Ubuntu Linux, Debian Linux, Fedora and 2 more 2025-05-06 N/A 7.5 HIGH
strongSwan before 5.9.8 allows remote attackers to cause a denial of service in the revocation plugin by sending a crafted end-entity (and intermediate CA) certificate that contains a CRL/OCSP URL that points to a server (under the attacker's control) that doesn't properly respond but (for example) just does nothing after the initial TCP handshake, or sends an excessive amount of application data.
CVE-2018-20622 2 Debian, Jasper Project 2 Debian Linux, Jasper 2025-05-06 4.3 MEDIUM 6.5 MEDIUM
JasPer 2.0.14 has a memory leak in base/jas_malloc.c in libjasper.a when "--output-format jp2" is used.
CVE-2022-42315 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42314 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2018-2798 6 Canonical, Debian, Hp and 3 more 14 Ubuntu Linux, Debian Linux, Xp7 Command View and 11 more 2025-05-06 5.0 MEDIUM 5.3 MEDIUM
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: AWT). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
CVE-2018-2790 6 Canonical, Debian, Hp and 3 more 13 Ubuntu Linux, Debian Linux, Xp7 Command View and 10 more 2025-05-06 2.6 LOW 3.1 LOW
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 3.1 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N).
CVE-2018-2796 6 Canonical, Debian, Hp and 3 more 14 Ubuntu Linux, Debian Linux, Xp7 Command View and 11 more 2025-05-06 5.0 MEDIUM 5.3 MEDIUM
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Concurrency). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
CVE-2022-42313 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2018-2815 6 Canonical, Debian, Hp and 3 more 13 Ubuntu Linux, Debian Linux, Xp7 Command View and 10 more 2025-05-06 5.0 MEDIUM 5.3 MEDIUM
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
CVE-2018-25032 11 Apple, Azul, Debian and 8 more 38 Mac Os X, Macos, Zulu and 35 more 2025-05-06 5.0 MEDIUM 7.5 HIGH
zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches.
CVE-2022-42311 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42312 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2017-5715 7 Arm, Canonical, Debian and 4 more 221 Cortex-a, Ubuntu Linux, Debian Linux and 218 more 2025-05-06 1.9 LOW 5.6 MEDIUM
Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis.
CVE-2022-42317 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-05 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42316 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-05 N/A 6.5 MEDIUM
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-25315 5 Debian, Fedoraproject, Libexpat Project and 2 more 6 Debian Linux, Fedora, Libexpat and 3 more 2025-05-05 7.5 HIGH 9.8 CRITICAL
In Expat (aka libexpat) before 2.4.5, there is an integer overflow in storeRawNames.
CVE-2022-32208 6 Apple, Debian, Fedoraproject and 3 more 19 Macos, Debian Linux, Fedora and 16 more 2025-05-05 4.3 MEDIUM 5.9 MEDIUM
When curl < 7.84.0 does FTP transfers secured by krb5, it handles message verification failures wrongly. This flaw makes it possible for a Man-In-The-Middle attack to go unnoticed and even allows it to inject data to the client.
CVE-2022-28356 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-05 2.1 LOW 5.5 MEDIUM
In the Linux kernel before 5.17.1, a refcount leak bug was found in net/llc/af_llc.c.
CVE-2022-25235 5 Debian, Fedoraproject, Libexpat Project and 2 more 6 Debian Linux, Fedora, Libexpat and 3 more 2025-05-05 7.5 HIGH 9.8 CRITICAL
xmltok_impl.c in Expat (aka libexpat) before 2.4.5 lacks certain validation of encoding, such as checks for whether a UTF-8 character is valid in a certain context.
CVE-2022-33981 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-05 2.1 LOW 3.3 LOW
drivers/block/floppy.c in the Linux kernel before 5.17.6 is vulnerable to a denial of service, because of a concurrency use-after-free flaw after deallocating raw_cmd in the raw_cmd_ioctl function.