Total
11736 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2023-26489 | 1 Bytecodealliance | 2 Cranelift-codegen, Wasmtime | 2023-11-07 | N/A | 9.9 CRITICAL |
wasmtime is a fast and secure runtime for WebAssembly. In affected versions wasmtime's code generator, Cranelift, has a bug on x86_64 targets where address-mode computation mistakenly would calculate a 35-bit effective address instead of WebAssembly's defined 33-bit effective address. This bug means that, with default codegen settings, a wasm-controlled load/store operation could read/write addresses up to 35 bits away from the base of linear memory. Due to this bug, however, addresses up to `0xffffffff * 8 + 0x7ffffffc = 36507222004 = ~34G` bytes away from the base of linear memory are possible from guest code. This means that the virtual memory 6G away from the base of linear memory up to ~34G away can be read/written by a malicious module. A guest module can, without the knowledge of the embedder, read/write memory in this region. The memory may belong to other WebAssembly instances when using the pooling allocator, for example. Affected embedders are recommended to analyze preexisting wasm modules to see if they're affected by the incorrect codegen rules and possibly correlate that with an anomalous number of traps during historical execution to locate possibly suspicious modules. The specific bug in Cranelift's x86_64 backend is that a WebAssembly address which is left-shifted by a constant amount from 1 to 3 will get folded into x86_64's addressing modes which perform shifts. For example `(i32.load (i32.shl (local.get 0) (i32.const 3)))` loads from the WebAssembly address `$local0 << 3`. When translated to Cranelift the `$local0 << 3` computation, a 32-bit value, is zero-extended to a 64-bit value and then added to the base address of linear memory. Cranelift would generate an instruction of the form `movl (%base, %local0, 8), %dst` which calculates `%base + %local0 << 3`. The bug here, however, is that the address computation happens with 64-bit values, where the `$local0 << 3` computation was supposed to be truncated to a a 32-bit value. This means that `%local0`, which can use up to 32-bits for an address, gets 3 extra bits of address space to be accessible via this `movl` instruction. The fix in Cranelift is to remove the erroneous lowering rules in the backend which handle these zero-extended expression. The above example is then translated to `movl %local0, %temp; shl $3, %temp; movl (%base, %temp), %dst` which correctly truncates the intermediate computation of `%local0 << 3` to 32-bits inside the `%temp` register which is then added to the `%base` value. Wasmtime version 4.0.1, 5.0.1, and 6.0.1 have been released and have all been patched to no longer contain the erroneous lowering rules. While updating Wasmtime is recommended, there are a number of possible workarounds that embedders can employ to mitigate this issue if updating is not possible. Note that none of these workarounds are on-by-default and require explicit configuration: 1. The `Config::static_memory_maximum_size(0)` option can be used to force all accesses to linear memory to be explicitly bounds-checked. This will perform a bounds check separately from the address-mode computation which correctly calculates the effective address of a load/store. Note that this can have a large impact on the execution performance of WebAssembly modules. 2. The `Config::static_memory_guard_size(1 << 36)` option can be used to greatly increase the guard pages placed after linear memory. This will guarantee that memory accesses up-to-34G away are guaranteed to be semantically correct by reserving unmapped memory for the instance. Note that this reserves a very large amount of virtual memory per-instances and can greatly reduce the maximum number of concurrent instances being run. 3. If using a non-x86_64 host is possible, then that will also work around this bug. This bug does not affect Wasmtime's or Cranelift's AArch64 backend, for example. | |||||
CVE-2023-25602 | 1 Fortinet | 1 Fortiweb | 2023-11-07 | N/A | 7.8 HIGH |
A stack-based buffer overflow in Fortinet FortiWeb 6.4 all versions, FortiWeb versions 6.3.17 and earlier, FortiWeb versions 6.2.6 and earlier, FortiWeb versions 6.1.2 and earlier, FortiWeb versions 6.0.7 and earlier, FortiWeb versions 5.9.1 and earlier, FortiWeb 5.8 all versions, FortiWeb 5.7 all versions, FortiWeb 5.6 all versions allows attacker to execute unauthorized code or commands via specially crafted command arguments. | |||||
CVE-2023-25744 | 1 Mozilla | 2 Firefox, Firefox Esr | 2023-11-07 | N/A | 8.8 HIGH |
Mmemory safety bugs present in Firefox 109 and Firefox ESR 102.7. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 110 and Firefox ESR < 102.8. | |||||
CVE-2023-23910 | 1 Intel | 2 Oneapi Hpc Toolkit, Trace Analyzer And Collector | 2023-11-07 | N/A | 7.8 HIGH |
Out-of-bounds write for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially escalation of privilege via local access. | |||||
CVE-2023-23780 | 1 Fortinet | 1 Fortiweb | 2023-11-07 | N/A | 8.8 HIGH |
A stack-based buffer overflow in Fortinet FortiWeb version 7.0.0 through 7.0.1, Fortinet FortiWeb version 6.3.6 through 6.3.19, Fortinet FortiWeb 6.4 all versions allows attacker to escalation of privilege via specifically crafted HTTP requests. | |||||
CVE-2023-22640 | 1 Fortinet | 2 Fortios, Fortiproxy | 2023-11-07 | N/A | 8.8 HIGH |
A out-of-bounds write in Fortinet FortiOS version 7.2.0 through 7.2.3, FortiOS version 7.0.0 through 7.0.10, FortiOS version 6.4.0 through 6.4.11, FortiOS version 6.2.0 through 6.2.13, FortiOS all versions 6.0, FortiProxy version 7.2.0 through 7.2.1, FortiProxy version 7.0.0 through 7.0.7, FortiProxy all versions 2.0, FortiProxy all versions 1.2, FortiProxy all versions 1.1, FortiProxy all versions 1.0 allows an authenticated attacker to execute unauthorized code or commands via specifically crafted requests. | |||||
CVE-2023-22639 | 1 Fortinet | 2 Fortios, Fortiproxy | 2023-11-07 | N/A | 7.8 HIGH |
A out-of-bounds write in Fortinet FortiOS version 7.2.0 through 7.2.3, FortiOS version 7.0.0 through 7.0.10, FortiOS version 6.4.0 through 6.4.12, FortiOS all versions 6.2, FortiOS all versions 6.0, FortiProxy version 7.2.0 through 7.2.2, FortiProxy version 7.0.0 through 7.0.8, FortiProxy all versions 2.0, FortiProxy all versions 1.2, FortiProxy all versions 1.1, FortiProxy all versions 1.0 allows attacker to escalation of privilege via specifically crafted commands. | |||||
CVE-2023-22842 | 1 F5 | 12 Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager, Big-ip Analytics and 9 more | 2023-11-07 | N/A | 7.5 HIGH |
On BIG-IP versions 16.1.x before 16.1.3.3, 15.1.x before 15.1.8.1, 14.1.x before 14.1.5.3, and all versions of 13.1.x, when a SIP profile is configured on a Message Routing type virtual server, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | |||||
CVE-2023-23781 | 1 Fortinet | 1 Fortiweb | 2023-11-07 | N/A | 8.8 HIGH |
A stack-based buffer overflow vulnerability [CWE-121] in FortiWeb version 7.0.1 and below, 6.4 all versions, version 6.3.19 and below SAML server configuration may allow an authenticated attacker to achieve arbitrary code execution via specifically crafted XML files. | |||||
CVE-2023-23580 | 1 Intel | 2 Oneapi Hpc Toolkit, Trace Analyzer And Collector | 2023-11-07 | N/A | 7.8 HIGH |
Stack-based buffer overflow for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially escalation of privilege via local access. | |||||
CVE-2023-23782 | 1 Fortinet | 1 Fortiweb | 2023-11-07 | N/A | 7.8 HIGH |
A heap-based buffer overflow in Fortinet FortiWeb version 7.0.0 through 7.0.1, FortiWeb version 6.3.0 through 6.3.19, FortiWeb 6.4 all versions, FortiWeb 6.2 all versions, FortiWeb 6.1 all versions allows attacker to escalation of privilege via specifically crafted arguments to existing commands. | |||||
CVE-2023-23582 | 1 Snapav | 2 Wattbox Wb-300-ip-3, Wattbox Wb-300-ip-3 Firmware | 2023-11-07 | N/A | 9.8 CRITICAL |
Snap One Wattbox WB-300-IP-3 versions WB10.9a17 and prior are vulnerable to a heap-based buffer overflow, which could allow an attacker to execute arbitrary code or crash the device remotely. | |||||
CVE-2023-23569 | 1 Intel | 2 Oneapi Hpc Toolkit, Trace Analyzer And Collector | 2023-11-07 | N/A | 7.8 HIGH |
Stack-based buffer overflow for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially enable escalation of privilege via local access. | |||||
CVE-2023-22442 | 1 Intel | 20 Server System D50tnp1mhcpac, Server System D50tnp1mhcpac Firmware, Server System D50tnp1mhcrac and 17 more | 2023-11-07 | N/A | 7.1 HIGH |
Out of bounds write in some Intel(R) Server Board BMC firmware before version 2.90 may allow a privileged user to enable escalation of privilege via local access. | |||||
CVE-2023-20078 | 1 Cisco | 34 Ip Phone 6825, Ip Phone 6825 Firmware, Ip Phone 6841 and 31 more | 2023-11-07 | N/A | 9.8 CRITICAL |
Multiple vulnerabilities in the web-based management interface of certain Cisco IP Phones could allow an unauthenticated, remote attacker to execute arbitrary code or cause a denial of service (DoS) condition. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
CVE-2023-20081 | 1 Cisco | 304 1100-4g Integrated Services Router, 1100-4p Integrated Services Router, 1100-6g Integrated Services Router and 301 more | 2023-11-07 | N/A | 5.9 MEDIUM |
A vulnerability in the IPv6 DHCP (DHCPv6) client module of Cisco Adaptive Security Appliance (ASA) Software, Cisco Firepower Threat Defense (FTD) Software, Cisco IOS Software, and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of DHCPv6 messages. An attacker could exploit this vulnerability by sending crafted DHCPv6 messages to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. Note: To successfully exploit this vulnerability, the attacker would need to either control the DHCPv6 server or be in a man-in-the-middle position. | |||||
CVE-2023-20079 | 1 Cisco | 42 Ip Phone 6825, Ip Phone 6825 Firmware, Ip Phone 6841 and 39 more | 2023-11-07 | N/A | 7.5 HIGH |
Multiple vulnerabilities in the web-based management interface of certain Cisco IP Phones could allow an unauthenticated, remote attacker to execute arbitrary code or cause a denial of service (DoS) condition. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
CVE-2023-0977 | 3 Linux, Microsoft, Trellix | 3 Linux Kernel, Windows, Agent | 2023-11-07 | N/A | 6.5 MEDIUM |
A heap-based overflow vulnerability in Trellix Agent (Windows and Linux) version 5.7.8 and earlier, allows a remote user to alter the page heap in the macmnsvc process memory block resulting in the service becoming unavailable. | |||||
CVE-2023-0853 | 1 Canon | 90 I-sensys Lbp621cw, I-sensys Lbp621cw Firmware, I-sensys Lbp623cdw and 87 more | 2023-11-07 | N/A | 9.8 CRITICAL |
Buffer overflow in mDNS NSEC record registering process of Office / Small Office Multifunction Printers and Laser Printers(*) which may allow an attacker on the network segment to trigger the affected product being unresponsive or to execute arbitrary code. *:Satera LBP660C Series/LBP620C Series/MF740C Series/MF640C Series firmware Ver.11.04 and earlier sold in Japan. Color imageCLASS LBP660C Series/LBP 620C Series/X LBP1127C/MF740C Series/MF640C Series/X MF1127C firmware Ver.11.04 and earlier sold in US. i-SENSYS LBP660C Series/LBP620C Series/MF740C Series/MF640C Series, C1127P, C1127iF, C1127i firmware Ver.11.04 and earlier sold in Europe. | |||||
CVE-2023-0852 | 1 Canon | 90 I-sensys Lbp621cw, I-sensys Lbp621cw Firmware, I-sensys Lbp623cdw and 87 more | 2023-11-07 | N/A | 9.8 CRITICAL |
Buffer overflow in the Address Book of Mobile Device function of Office / Small Office Multifunction Printers and Laser Printers(*) which may allow an attacker on the network segment to trigger the affected product being unresponsive or to execute arbitrary code. *:Satera LBP660C Series/LBP620C Series/MF740C Series/MF640C Series firmware Ver.11.04 and earlier sold in Japan. Color imageCLASS LBP660C Series/LBP 620C Series/X LBP1127C/MF740C Series/MF640C Series/X MF1127C firmware Ver.11.04 and earlier sold in US. i-SENSYS LBP660C Series/LBP620C Series/MF740C Series/MF640C Series, C1127P, C1127iF, C1127i firmware Ver.11.04 and earlier sold in Europe. |